Hypothetical Tetrahedrally Bonded Carbon with 3-Member Rings Model Structure:

A_hP6_194_h-001

This structure originally had the label A_hP6_194_h. Calls to that address will be redirected here.

Cite this page as: M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallo-graphic Prototypes: Part 1*, Comput. Mater. Sci. **136**, S1-828 (2017). doi: 10.1016/j.commatsci.2017.01.017

https://aflow.org/p/1BYJ

 $https://aflow.org/p/A_hP6_194_h-001$

Prototype C

AFLOW prototype label A_hP6_194_h-001

ICSD None
Pearson symbol hP6
Space group number 194

Space group symbol $P6_3/mmc$

AFLOW prototype command aflow --proto=A_hP6_194_h-001 --params= $a, c/a, x_1$

• This structure was proposed in (Schultz, 1999) to show that it was energetically possible to form three-member rings in amorphous sp³ carbon structures.

Hexagonal primitive vectors

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c\,\hat{\mathbf{z}}$$

Basis vectors

		$\begin{array}{c} \text{Lattice} \\ \text{coordinates} \end{array}$		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$x_1 \mathbf{a}_1 + 2x_1 \mathbf{a}_2 + \frac{1}{4} \mathbf{a}_3$	=	$\frac{3}{2}ax_1\hat{\mathbf{x}} + \frac{\sqrt{3}}{2}ax_1\hat{\mathbf{y}} + \frac{1}{4}c\hat{\mathbf{z}}$	(6h)	CI
$\mathbf{B_2}$	=	$-2x_1\mathbf{a}_1 - x_1\mathbf{a}_2 + \frac{1}{4}\mathbf{a}_3$	=	$-\frac{3}{2}ax_1\hat{\mathbf{x}} + \frac{\sqrt{3}}{2}ax_1\hat{\mathbf{y}} + \frac{1}{4}c\hat{\mathbf{z}}$	(6h)	CI
${f B_3}$	=	$x_1 \mathbf{a}_1 - x_1 \mathbf{a}_2 + \frac{1}{4} \mathbf{a}_3$	=	$-\sqrt{3}ax_1\mathbf{\hat{y}}+rac{1}{4}c\mathbf{\hat{z}}$	(6h)	CI
$\mathbf{B_4}$	=	$-x_1\mathbf{a}_1 - 2x_1\mathbf{a}_2 + \frac{3}{4}\mathbf{a}_3$	=	$-\frac{3}{2}ax_1\hat{\mathbf{x}} - \frac{\sqrt{3}}{2}ax_1\hat{\mathbf{y}} + \frac{3}{4}c\hat{\mathbf{z}}$	(6h)	CI
${f B_5}$	=	$2x_1\mathbf{a}_1 + x_1\mathbf{a}_2 + \frac{3}{4}\mathbf{a}_3$	=	$\frac{3}{2}ax_1\hat{\mathbf{x}} - \frac{\sqrt{3}}{2}ax_1\hat{\mathbf{y}} + \frac{3}{4}c\hat{\mathbf{z}}$	(6h)	CI
${f B_6}$	=	$-x_1\mathbf{a}_1 + x_1\mathbf{a}_2 + \frac{3}{4}\mathbf{a}_3$	=	$\sqrt{3}ax_1\hat{\mathbf{y}} + \tfrac{3}{4}c\hat{\mathbf{z}}$	(6h)	CI

References

[1] P. A. Schultz, K. Leung, and E. B. Stechel, Small rings and amorphous tetrahedral carbon, Phys. Rev. B 59, 733–741 (1999), doi:10.1103/PhysRevB.59.733.