Lonsdaleite (Hexagonal Diamond) Structure:
 A_hP4_194_f-001

This structure originally had the label A_hP4_194_f. Calls to that address will be redirected here.

Cite this page as: M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comput. Mater. Sci. 136, S1-828 (2017). doi: 10.1016/j.commatsci.2017.01.017

https://aflow.org/p/4AMD

Other compounds with this structure

Ge (hexagonal), H (hexagonal), N (hexagonal), O (hexagonal), Si (hexagonal)

- Hexagonal diamond was named lonsdaleite in honor of Kathleen Lonsdale.
- This structure is related to the hcp $(A 3)$ structure in the same way that diamond $(A 4)$ is related to the fcc lattice (A1).
- It can also be obtained from wurtzite (B4) by replacing both the Zn and S atoms by carbon.
- The "ideal" structure, where the nearest-neighbor environment of each atom is the same as in diamond, is achieved when we take $c / a=\sqrt{8 / 3}$ and $z_{1}=1 / 16$.
- Alternatively, we can take $z_{1}=3 / 16$, in which case the origin is at the center of a C-C bond aligned in the [0001] direction.
- When $z_{1}=0$ this structure becomes a set of graphitic sheets, but not true hexagonal graphite (A9), as the stacking differs.
- (Yoshiasa, 2003) does not have an ICSD entry for Lonsdaleite, so we use the one provided for (Ownby, 1992).

Hexagonal primitive vectors

$$
\stackrel{a 1}{\stackrel{L}{a 2}^{a}} \text { a3 }
$$

$$
\begin{aligned}
& \mathbf{a}_{1}=\frac{1}{2} a \hat{\mathbf{x}}-\frac{\sqrt{3}}{2} a \hat{\mathbf{y}} \\
& \mathbf{a}_{2}= \\
& \frac{1}{2} a \hat{\mathbf{x}}+\frac{\sqrt{3}}{2} a \hat{\mathbf{y}} \\
& \mathbf{a}_{3}=
\end{aligned}
$$

Basis vectors					
	Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B}_{1}=$	$\frac{1}{3} \mathbf{a}_{1}+\frac{2}{3} \mathbf{a}_{2}+z_{1} \mathbf{a}_{3}$	$=$	$\frac{1}{2} a \hat{\mathbf{x}}+\frac{\sqrt{3}}{6} a \hat{\mathbf{y}}+c z_{1} \hat{\mathbf{z}}$	(4f)	C I
$\mathbf{B}_{2}=$	$\frac{2}{3} \mathbf{a}_{1}+\frac{1}{3} \mathbf{a}_{2}+\left(z_{1}+\frac{1}{2}\right) \mathbf{a}_{3}$	$=$	$\frac{1}{2} a \hat{\mathbf{x}}-\frac{\sqrt{3}}{6} a \hat{\mathbf{y}}+c\left(z_{1}+\frac{1}{2}\right) \hat{\mathbf{z}}$	(4f)	C I
$\mathbf{B}_{3}=$	$\frac{2}{3} \mathbf{a}_{1}+\frac{1}{3} \mathbf{a}_{2}-z_{1} \mathbf{a}_{3}$	$=$	$\frac{1}{2} a \hat{\mathbf{x}}-\frac{\sqrt{3}}{6} a \hat{\mathbf{y}}-c z_{1} \hat{\mathbf{z}}$	(4f)	C I
$\mathrm{B}_{4}=$	$\frac{1}{3} \mathbf{a}_{1}+\frac{2}{3} \mathbf{a}_{2}-\left(z_{1}-\frac{1}{2}\right) \mathbf{a}_{3}$	$=$	$\frac{1}{2} a \hat{\mathbf{x}}+\frac{\sqrt{3}}{6} a \hat{\mathbf{y}}-c\left(z_{1}-\frac{1}{2}\right) \hat{\mathbf{z}}$	(4f)	C I

References

[1] A. Yoshiasa, Y. Murai, O. Ohtaka, and T. Katsura, Detailed Structures of Hexagonal Diamond (lonsdaleite) and Wurtzite-type BN, Jpn. J. Appl. Phys. 42, 1694-1704 (2003), doi:10.1143/JJAP.42.1694.
[2] P. D. Ownby, X. Yang, and J. Liu, Calculated X-ray Diffraction Data for Diamond Polytypes, J. Am. Ceram. Soc. 75, 1876-1883 (1992), doi 10.1111/j.1151-2916.1992.tb07211.x

