$\delta-\mathrm{CuTi}\left(L 2_{a}\right)$ Structure:
 AB_tP2_123_a_d-002

This structure originally had the label AB_tP2_123_a_d.CuTi. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comput. Mater. Sci. 199, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

https://aflow.org/p/C9G2
https://aflow.org/p/AB_tP2_123_a_d-002

Other compounds with this structure

HgMn

- As we have been unable to find a copy of (Karlsson, 1951), we obtained the value a $=4.44 \AA$ from (Pearson, 1958). The ICSD entry uses $\mathrm{a}=3.14 \AA$, referencing the original publication. For now we will continue to use the value from (Pearson, 1958).
- This structure has the same AFLOW designation, AB_tP2_123_a_d, as $\mathrm{CuAu}\left(L 1_{0}\right)$, The only difference in the structures is the c/a ratio. $L 1_{0}$ has $c / a \approx \sqrt{2}$, characteristic of face-centered cubic ordering, while $L 2_{a}$ has $c / a \approx 1$, a body-centered cubic-like system.

Simple Tetragonal primitive vectors

$$
\begin{aligned}
& \mathbf{a}_{\mathbf{1}}=a \hat{\mathbf{x}} \\
& \mathbf{a}_{2}=a \hat{\mathbf{y}} \\
& \mathbf{a}_{\mathbf{3}}=c \hat{\mathbf{z}}
\end{aligned}
$$

Basis vectors

Lattice				
coordinates				
0	$=$	Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{a}_{1}+\frac{1}{2} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$	$=$	0	$(1 \mathrm{a})$	Cu I
		$\frac{1}{2} a \hat{\mathbf{x}}+\frac{1}{2} a \hat{\mathbf{y}}+\frac{1}{2} c \hat{\mathbf{z}}$	$(1 \mathrm{~d})$	Ti I

References

[1] N. Karlsson, An X-Ray Study of the Phases in the Copper-Titanium System, J. Inst. Met. 79, 391-405 (1951).

Found in

[1] W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, International Series of Monographs on Metal Physics and Physical Metallurgy, vol. 4 (Pergamon Press, Oxford, London, Edinburgh, New York, Paris, Frankfort, 1958), 1964 reprint with corrections edn.

