δ -CuTi $(L2_a)$ Structure: AB_tP2_123_a_d-002

This structure originally had the label AB_tP2_123_a_d.CuTi. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 3*, Comput. Mater. Sci. **199**, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

https://aflow.org/p/C9G2

 $https://aflow.org/p/AB_tP2_123_a_d-002$

Prototype CuTi

AFLOW prototype label AB_tP2_123_a_d-002

Strukturbericht designation $L2_a$

ICSD 103127

Pearson symbol tP2

Space group number 123

Space group symbol P4/mmm

AFLOW prototype command aflow --proto=AB_tP2_123_a_d-002

--params=a, c/a

Other compounds with this structure HgMn

• As we have been unable to find a copy of (Karlsson, 1951), we obtained the value a = 4.44Å from (Pearson, 1958). The ICSD entry uses a = 3.14Å, referencing the original publication. For now we will continue to use the value from (Pearson, 1958).

• This structure has the same AFLOW designation, AB_tP2_123_a_d, as CuAu ($L1_0$). The only difference in the structures is the c/a ratio. $L1_0$ has $c/a \approx \sqrt{2}$, characteristic of face-centered cubic ordering, while $L2_a$ has $c/a \approx 1$, a body-centered cubic-like system.

Simple Tetragonal primitive vectors

$$\mathbf{a_1} = a\,\hat{\mathbf{x}}$$

$$\mathbf{a_2} = a\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c \, \hat{\mathbf{z}}$$

Basis vectors

		$\begin{array}{c} \text{Lattice} \\ \text{coordinates} \end{array}$		Cartesian coordinates	Wyckoff position	Atom type
${f B_1}$	=	0	=	0	(1a)	Cu I
${f B_2}$	=	$\frac{1}{2}\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{1}{2}a\hat{\mathbf{y}} + \frac{1}{2}c\hat{\mathbf{z}}$	(1d)	Ti I

References

[1] N. Karlsson, An X-Ray Study of the Phases in the Copper-Titanium System, J. Inst. Met. 79, 391–405 (1951).

Found in

[1] W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, International Series of Monographs on Metal Physics and Physical Metallurgy, vol. 4 (Pergamon Press, Oxford, London, Edinburgh, New York, Paris, Frankfort, 1958), 1964 reprint with corrections edn.