Modderite (CoAs) Structure: AB_oP8_33_a_a_001

This structure originally had the label AB_oP8_33_a_a. Calls to that address will be redirected here.

Cite this page as: M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallo-graphic Prototypes: Part 1*, Comput. Mater. Sci. **136**, S1-828 (2017). doi: 10.1016/j.commatsci.2017.01.017

https://aflow.org/p/8Z7Q

 $https://aflow.org/p/AB_oP8_33_a_a-001$

Prototype AsCo

AFLOW prototype label AB_oP8_33_a_a-001

Mineral name modderite

ICSD 48027

Pearson symbol oP8

Space group number 33

Space group symbol Pna2₁

AFLOW prototype command aflow --proto=AB_oP8_33_a_a-001

--params= $a, b/a, c/a, x_1, y_1, z_1, x_2, y_2, z_2$

Other compounds with this structure

FeAs

- Space group $Pna2_1 \# 33$ allows an arbitrary origin for the z-axis, which is set here by taking $z_2 = 1/4$.
- When $z_1 = z_2 = 1/4$, the space group becomes Pnma #62 and the structure is equivalent to MnP (B31).
- (Lyman, 1984) sets $z_1 = 0.2506$, so this condition is almost fulfilled.
- (Lyman, 1984) lists both space groups for both CoAs and FeAs, and prefers the MnP structure for these compounds.

- \bullet AFLOW also places this structure in space group Pnma, and only predicts the lower symmetry structure if we lower the native tolerance using
- $\bullet \ \, aflow \ \, -proto = AB_oP8_33_a_a \ \, --tolerance = 0.001 \ \, -params = a,b/,c/a,x_1,y_1,z_1,x_2,y_2,z_2 \ \, .$

Simple Orthorhombic primitive vectors

 $\mathbf{a_1} = a \, \hat{\mathbf{x}}$

 $\mathbf{a_2} = b\,\hat{\mathbf{y}}$

 $\mathbf{a_3} = c \hat{\mathbf{z}}$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$x_1 \mathbf{a}_1 + y_1 \mathbf{a}_2 + z_1 \mathbf{a}_3$	=	$ax_1 \hat{\mathbf{x}} + by_1 \hat{\mathbf{y}} + cz_1 \hat{\mathbf{z}}$	(4a)	As I
$\mathbf{B_2}$	=	$-x_1 \mathbf{a}_1 - y_1 \mathbf{a}_2 + \left(z_1 + \frac{1}{2}\right) \mathbf{a}_3$	=	$-ax_1\mathbf{\hat{x}} - by_1\mathbf{\hat{y}} + c\left(z_1 + \frac{1}{2}\right)\mathbf{\hat{z}}$	(4a)	As I
$\mathbf{B_3}$	=	$\left(x_1+\frac{1}{2}\right) \mathbf{a}_1 - \left(y_1-\frac{1}{2}\right) \mathbf{a}_2 + z_1 \mathbf{a}_3$	=	$a\left(x_1+\frac{1}{2}\right)\hat{\mathbf{x}}-b\left(y_1-\frac{1}{2}\right)\hat{\mathbf{y}}+cz_1\hat{\mathbf{z}}$	(4a)	As I
$\mathbf{B_4}$	=	$-\left(x_1-\frac{1}{2}\right) \mathbf{a}_1 + \left(y_1+\frac{1}{2}\right) \mathbf{a}_2 +$	=	$-a\left(x_{1}-\frac{1}{2}\right) \hat{\mathbf{x}}+b\left(y_{1}+\frac{1}{2}\right) \hat{\mathbf{y}}+c\left(z_{1}+\frac{1}{2}\right) \hat{\mathbf{z}}$	(4a)	As I
		$(z_1 + \frac{1}{2}) \ \mathbf{a}_3$				
${f B_5}$	=	$x_2 \mathbf{a}_1 + y_2 \mathbf{a}_2 + z_2 \mathbf{a}_3$	=	$ax_2\mathbf{\hat{x}} + by_2\mathbf{\hat{y}} + cz_2\mathbf{\hat{z}}$	(4a)	Co I
${f B_6}$	=	$-x_2\mathbf{a}_1 - y_2\mathbf{a}_2 + \left(z_2 + \frac{1}{2}\right)\mathbf{a}_3$	=	$-ax_2\mathbf{\hat{x}} - by_2\mathbf{\hat{y}} + c\left(z_2 + \frac{1}{2}\right)\mathbf{\hat{z}}$	(4a)	Co I
$\mathbf{B_7}$	=	$\left(x_2 + \frac{1}{2}\right) \mathbf{a}_1 - \left(y_2 - \frac{1}{2}\right) \mathbf{a}_2 + z_2 \mathbf{a}_3$	=	$a\left(x_{2}+\frac{1}{2}\right) \hat{\mathbf{x}}-b\left(y_{2}-\frac{1}{2}\right) \hat{\mathbf{y}}+cz_{2}\hat{\mathbf{z}}$	(4a)	Co I
$\mathbf{B_8}$	=	$-\left(x_2-\frac{1}{2}\right) \mathbf{a}_1 + \left(y_2+\frac{1}{2}\right) \mathbf{a}_2 +$	=	$-a\left(x_{2}-\frac{1}{2}\right) \hat{\mathbf{x}}+b\left(y_{2}+\frac{1}{2}\right) \hat{\mathbf{y}}+c\left(z_{2}+\frac{1}{2}\right) \hat{\mathbf{z}}$	(4a)	Co I
		$(z_2 + \frac{1}{2}) \ \mathbf{a}_3$				

References

[1] P. S. Lyman and C. T. Prewitt, Room- and high-pressure crystal chemistry of CoAs and FeAs, Acta Crystallogr. Sect. B 40, 14–20 (1984), doi:10.1107/S0108768184001695.