
B30 (MgZn?) Structure (Problematic): AB_oI48_44_6c_abc2de-001

This structure originally had the label AB_oI48_44_6d_ab2cde. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 3*, Comput. Mater. Sci. **199**, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

https://aflow.org/p/WDVJ

 $https://aflow.org/p/AB_oI48_44_6c_abc2de-001$

Prototype MgZn

AFLOW prototype label AB_oI48_44_6c_abc2de-001

Strukturbericht designation B30

ICSD 151402

Pearson symbol oI48

Space group number 44

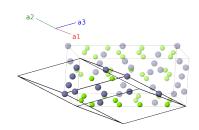
Space group symbol Imm2

AFLOW prototype command aflow --proto=AB_oI48_44_6c_abc2de-001

--params= $a, b/a, c/a, z_1, z_2, x_3, z_3, x_4, z_4, x_5, z_5, x_6, z_6, x_7, z_7, x_8, z_8, x_9, z_9, y_{10}, z_{10}, y_{11}, y_{11}, y_{12}, y_{13}, y_{14}, y_{15}, y_{15}$

 $z_{11}, x_{12}, y_{12}, z_{12}$

- It is rather a mystery why (Hermann, 1937) gave this the *Strukturbericht* designation B30, as the structure presented in the literature contradicts itself. (Tarschish, 1933) derived this structure from the hexagonal Laves structure MgZn₂ (C14) by doubling the unit cell in all directions to obtain a 96 atom unit cell, replacing 16 of the zinc atoms in this structure by magnesium, and shifting the z-coordinates of these atoms by $\pm c/16$. He then states that the space group remains $P6_3/mmc \ \#194$.
- (McKeehan, 1935) pointed out that this is impossible, as the converted Mg atoms only have a two-fold rotation axis about the z-axis. He assigned the structure to space group Pmm2 # 25.


- (Hermann, 1937) referenced both papers, giving the space group as $P6_3/mmc$ but listing the atomic coordinates enumerated by McKeehan.
- In fact, the McKeehan structure has space group Imm2~#44, with 48 atoms in the conventional cell, half of the original, and 24 atoms in the primitive cell. This was noted, without reference, by (Parthé, 1993), which is the only comprehensive list of Strukturbericht symbols to include the B30 structure. We have reproduced this Imm2 structure from McKeehan's data.
- The true structure of MgZn is unclear. It is seen in the Mg-Zn binary phase diagram (Massalski, 1990) over a small range of compositions, but a complete crystallographic study has never been published. It is possible that the actual structure is off-stoichiometry. There is some evidence of an Mg₁₂Zn₁₃ structure (Mezbahul-Islam, 2014), and Mg₂₁Zn₂₅ has been determined (Cerný, 2002) to have the Zr₂₁Re₂₅ structure.
- There are similar problems with the D2₂ MgZn₅ structure, which we discuss on that page.
- The ICSD entry is from (Tarschish, 1933). It gives the atomic positions in space group P1~#1, but AFLOW finds that the structure is in space group Imm2~#44, as found from our analysis of (McKeehan, 1935). Unsurprisingly, this structure does not agree with our interpretation of the data.

Body-centered Orthorhombic primitive vectors

$$\mathbf{a_1} = -\frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}b\,\hat{\mathbf{y}} + \frac{1}{2}c\,\hat{\mathbf{z}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{1}{2}b\,\hat{\mathbf{y}} + \frac{1}{2}c\,\hat{\mathbf{z}}$$

$$\mathbf{a_3} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}b\,\hat{\mathbf{y}} - \frac{1}{2}c\,\hat{\mathbf{z}}$$

Basis vectors

Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1} = \qquad \qquad z_1 \mathbf{a}_1 + z_1 \mathbf{a}_2$	=	$cz_1\mathbf{\hat{z}}$	(2a)	Zn I
$\mathbf{B_2} = \left(z_2 + \frac{1}{2}\right) \mathbf{a}_1 + z_2 \mathbf{a}_2 + \frac{1}{2}$	$\mathbf{a}_3 =$	$rac{1}{2}b\mathbf{\hat{y}}+cz_{2}\mathbf{\hat{z}}$	(2b)	Zn II
$\mathbf{B_3} = z_3 \mathbf{a}_1 + (x_3 + z_3) \mathbf{a}_2 + x_3$	$_3 \mathbf{a}_3 =$	$ax_3\mathbf{\hat{x}} + cz_3\mathbf{\hat{z}}$	(4c)	Mg I
$\mathbf{B_4} = z_3 \mathbf{a}_1 - (x_3 - z_3) \mathbf{a}_2 - x_3$	$_3 \mathbf{a}_3 =$	$-ax_3\mathbf{\hat{x}}+cz_3\mathbf{\hat{z}}$	(4c)	Mg I
$\mathbf{B_5} = z_4 \mathbf{a}_1 + (x_4 + z_4) \mathbf{a}_2 + x_4 \mathbf{a}_3 + x_4 \mathbf{a}_4 + x_4 \mathbf{a}_5 + x_5 \mathbf{a}_5 + \mathbf{a}_5 + x_5 $	$_4\mathbf{a}_3 =$	$ax_4\mathbf{\hat{x}} + cz_4\mathbf{\hat{z}}$	(4c)	Mg II
$\mathbf{B_6} = z_4 \mathbf{a}_1 - (x_4 - z_4) \mathbf{a}_2 - x_4 \mathbf{a}_3 - x_4 \mathbf{a}_4 - x_4 \mathbf{a}_4 - x_4 \mathbf{a}_5 - x_5 \mathbf{a}_5 - \mathbf{a}_5 - x_5 $	$_4\mathbf{a}_3 =$	$-ax_4\mathbf{\hat{x}} + cz_4\mathbf{\hat{z}}$	(4c)	Mg II
$\mathbf{B_7} = z_5 \mathbf{a}_1 + (x_5 + z_5) \mathbf{a}_2 + x_5$	$_{5}\mathbf{a}_{3} =$	$ax_5\mathbf{\hat{x}} + cz_5\mathbf{\hat{z}}$	(4c)	${ m Mg~III}$
$\mathbf{B_8} = z_5 \mathbf{a}_1 - (x_5 - z_5) \mathbf{a}_2 - x_5$	$_{5}\mathbf{a}_{3} =$	$-ax_5\mathbf{\hat{x}}+cz_5\mathbf{\hat{z}}$	(4c)	${ m Mg~III}$
$\mathbf{B_9} = z_6 \mathbf{a}_1 + (x_6 + z_6) \mathbf{a}_2 + x_6 \mathbf{a}_3 + x_6 \mathbf{a}_4 + x_6 \mathbf{a}_5 + \mathbf{a}_5 + x_6 $	$_{6}\mathbf{a}_{3} =$	$ax_6 \hat{\mathbf{x}} + cz_6 \hat{\mathbf{z}}$	(4c)	$\operatorname{Mg}\operatorname{IV}$
$\mathbf{B_{10}} = z_6 \mathbf{a}_1 - (x_6 - z_6) \mathbf{a}_2 - x_6 \mathbf{a}_3 - x_6 \mathbf{a}_4 - x_6 \mathbf{a}_5 - \mathbf{a}_5 - x_6 \mathbf{a}_5 - \mathbf{a}_5 - x_6 \mathbf{a}_$	$_{6}\mathbf{a}_{3} =$	$-ax_6\mathbf{\hat{x}} + cz_6\mathbf{\hat{z}}$	(4c)	$\operatorname{Mg}\operatorname{IV}$
$\mathbf{B_{11}} = z_7 \mathbf{a}_1 + (x_7 + z_7) \mathbf{a}_2 + x_7 \mathbf{a}_3 + x_7 \mathbf{a}_4 + x_7 \mathbf{a}_5 +$	$_{7}\mathbf{a}_{3} \hspace{1cm} =$	$ax_7 \hat{\mathbf{x}} + cz_7 \hat{\mathbf{z}}$	(4c)	$\operatorname{Mg} V$
$\mathbf{B_{12}} = z_7 \mathbf{a}_1 - (x_7 - z_7) \mathbf{a}_2 - x_7 \mathbf{a}_3 - x_7 \mathbf{a}_4 - x_7 \mathbf{a}_5 -$	$_{7}{f a}_{3} =$	$-ax_7\mathbf{\hat{x}} + cz_7\mathbf{\hat{z}}$	(4c)	Mg V
$\mathbf{B_{13}} = z_8 \mathbf{a}_1 + (x_8 + z_8) \mathbf{a}_2 + x_8$	$_{8}\mathbf{a}_{3}=$	$ax_8\mathbf{\hat{x}} + cz_8\mathbf{\hat{z}}$	(4c)	$\operatorname{Mg} \operatorname{VI}$
$\mathbf{B_{14}} = z_8 \mathbf{a}_1 - (x_8 - z_8) \mathbf{a}_2 - x_8 \mathbf{a}_3 - x_8 \mathbf{a}_4 - x_8 \mathbf{a}_4 - x_8 \mathbf{a}_5 -$	$_{8}\mathbf{a}_{3} =$	$-ax_8\mathbf{\hat{x}} + cz_8\mathbf{\hat{z}}$	(4c)	$\operatorname{Mg} \operatorname{VI}$
$\mathbf{B_{15}} = z_9 \mathbf{a}_1 + (x_9 + z_9) \mathbf{a}_2 + x_9$	$_{9}\mathbf{a}_{3} =$	$ax_9\mathbf{\hat{x}} + cz_9\mathbf{\hat{z}}$	(4c)	Zn III
$\mathbf{B_{16}} = z_9 \mathbf{a}_1 - (x_9 - z_9) \mathbf{a}_2 - x_9$	$_{9} \mathbf{a}_{3} =$	$-ax_9\mathbf{\hat{x}}+cz_9\mathbf{\hat{z}}$	(4c)	Zn III
$\mathbf{B_{17}} = (y_{10} + z_{10}) \ \mathbf{a}_1 + z_{10} \ \mathbf{a}_2 + y_{10} \ \mathbf{a}_1 + z_{10} \ \mathbf{a}_2 + y_{10} \ \mathbf{a}_2 + y_{10$	$y_{10} \mathbf{a}_3 =$	$by_{10}\mathbf{\hat{y}}+cz_{10}\mathbf{\hat{z}}$	(4d)	$\operatorname{Zn}\operatorname{IV}$
$\mathbf{B_{18}} = -(y_{10} - z_{10}) \ \mathbf{a}_1 + z_{10} \ \mathbf{a}_2 -$	$y_{10} \mathbf{a}_3 =$	$-by_{10}\mathbf{\hat{y}}+cz_{10}\mathbf{\hat{z}}$	(4d)	$\operatorname{Zn}\operatorname{IV}$
$\mathbf{B_{19}} = (y_{11} + z_{11}) \ \mathbf{a}_1 + z_{11} \ \mathbf{a}_2 + y_{11} \ \mathbf{a}_2 + y_{12} \ \mathbf{a}_1 + z_{11} \ \mathbf{a}_2 + y_{12} \ \mathbf{a}_2 + y_{13} \ \mathbf{a}_3 + y_{13$	$y_{11} \mathbf{a}_3 =$	$by_{11}\mathbf{\hat{y}}+cz_{11}\mathbf{\hat{z}}$	(4d)	$\operatorname{Zn}\operatorname{V}$

$$\mathbf{B_{20}} = -(y_{11} - z_{11}) \, \mathbf{a}_1 + z_{11} \, \mathbf{a}_2 - y_{11} \, \mathbf{a}_3 = -by_{11} \, \hat{\mathbf{y}} + cz_{11} \, \hat{\mathbf{z}}$$
(4d) Zn V

$$\mathbf{B_{21}} = (y_{12} + z_{12}) \, \mathbf{a}_1 + (x_{12} + z_{12}) \, \mathbf{a}_2 + = ax_{12} \, \hat{\mathbf{x}} + by_{12} \, \hat{\mathbf{y}} + cz_{12} \, \hat{\mathbf{z}}$$
(8e) Zn VI

$$(x_{12} + y_{12}) \, \mathbf{a}_3 = -(y_{12} - z_{12}) \, \mathbf{a}_1 - = -ax_{12} \, \hat{\mathbf{x}} - by_{12} \, \hat{\mathbf{y}} + cz_{12} \, \hat{\mathbf{z}}$$
(8e) Zn VI

$$(x_{12} - z_{12}) \, \mathbf{a}_2 - (x_{12} + y_{12}) \, \mathbf{a}_3 = ax_{12} \, \hat{\mathbf{x}} - by_{12} \, \hat{\mathbf{y}} + cz_{12} \, \hat{\mathbf{z}}$$
(8e) Zn VI

$$(x_{12} + z_{12}) \, \mathbf{a}_2 + (x_{12} - y_{12}) \, \mathbf{a}_3 = -ax_{12} \, \hat{\mathbf{x}} - by_{12} \, \hat{\mathbf{y}} + cz_{12} \, \hat{\mathbf{z}}$$
(8e) Zn VI

$$(x_{12} + z_{12}) \, \mathbf{a}_2 + (x_{12} - y_{12}) \, \mathbf{a}_3 = -ax_{12} \, \hat{\mathbf{x}} + by_{12} \, \hat{\mathbf{y}} + cz_{12} \, \hat{\mathbf{z}}$$
(8e) Zn VI

$$(x_{12} - y_{12}) \, \mathbf{a}_3 = -ax_{12} \, \hat{\mathbf{x}} + by_{12} \, \hat{\mathbf{y}} + cz_{12} \, \hat{\mathbf{z}}$$
(8e) Zn VI

References

- [1] C. Hermann, O. Lohrmann, and H. Philipp, eds., *Strukturbericht Band II 1928-1932* (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
- [2] L. Tarschisch, Röntgenographische Untersuchung der Verbindungen MgZn und MgZn₅, Z. Kristallogr. **86**, 423–438 (1933), doi:10.1524/zkri.1933.86.1.423.
- [3] L. W. McKeehan, Note on MgZn and MgZn₅, Z. Kristallogr. **91**, 501–503 (1935), doi:10.1524/zkri.1935.91.1.501.
- [4] E. Parthé, L. Gelato, B. Chabot, M. Penso, K. Cenzula, and R. Gladyshevskii, Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Gmelin Handbook of Inorganic and Organometallic Chemistry, vol. 2 (Springer-Verlag, Berlin, Heidelberg, 1993), 8 edn., doi:10.1007/978-3-662-02909-1_3.
- [5] T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, eds., Binary Alloy Phase Diagrams, vol. 3 (ASM International, Materials Park, Ohio, USA, 1990), 2nd edn. Hf-Re to Zn-Zr.
- [6] M. Mezbahul-Islam, A. O. Mostafa, and M. Medraj, Essential Magnesium Alloys Binary Phase Diagrams and Their Thermochemical Data, J. Mater. 2014, 704283 (2014), doi:10.1155/2014/704283.
- [7] R. Cerný and G. Renaudin, The intermetallic compound $Mg_{21}Zn_{25}$, Acta Crystallogr. Sect. C **58**, i154–i155 (2002), doi:10.1107/S0108270102018103.