$L'3_0$ (approximate Fe₂N) Structure: AB_hP4_194_c_a-003

This structure originally had the label AB_hP4_194_c_a.Fe2N. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 3*, Comput. Mater. Sci. **199**, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

https://aflow.org/p/Q425 https://aflow.org/p/AB_hP4_194_c_a-003 Fe N Prototype Fe_2N **AFLOW** prototype label AB_hP4_194_c_a-003 Strukturbericht designation $L'3_{0}$ ICSD none Pearson symbol hP4 194 Space group number Space group symbol $P6_3/mmc$ **AFLOW** prototype command aflow --proto=AB_hP4_194_c_a-003 --params=a, c/a

Other compounds with this structure β -CTa₂, CV₂, CW₂, Mn₂N, Nb₂N, Ta_{\approx 2}N

- The $L'3_0$ designation is only found in (Smithells, 1955) and (Pearson, 1958), as well as their following volumes.
- Smithells gives two possible positions of the nitrogen atoms. We use the one that matches Pearson, which (Parthé, 1993) notes is equivalent to the NiAs B8₁ structure, but here the (2a) nitrogen site is only half-filled to maintain stoichiometry.

- Neither of the defining references gives a source for the structure.
- It is likely an approximation to ϵ -Fe₂N, which has the β -V₂N $L'3_2$ structure.
- We take the lattice constants for this structure from the Fe-Fe distances in ϵ -Fe₂N provided by (Hendricks, 1930), though this is *not* the structure described by Hendricks.
- The similar compounds list is taken from (Pearson, 1967). As it is quite similar to the list for β -V₂N, it is likely that this structure is only an approximation to the correct structure for these compounds as well.
- Fe₂N is also observed in the ζ -Fe₂N structure.
- This structure has the same AFLOW designation, AB_hP4_194_c_a_Fe2N, as B8₁. The two structures differ by their lattice constants and the half-occupancy of the (2a) site in L'3₀.

Hexagonal primitive vectors

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
B_1	=	0	=	0	(2a)	ΝI
B_2	=	$rac{1}{2} {f a}_3$	=	$\frac{1}{2}c\mathbf{\hat{z}}$	(2a)	ΝI
B_3	=	$rac{1}{3}{f a}_1+rac{2}{3}{f a}_2+rac{1}{4}{f a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{\sqrt{3}}{6}a\mathbf{\hat{y}} + \frac{1}{4}c\mathbf{\hat{z}}$	(2c)	Fe I
$\mathbf{B_4}$	=	$rac{2}{3}{f a}_1+rac{1}{3}{f a}_2+rac{3}{4}{f a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} - \frac{\sqrt{3}}{6}a\mathbf{\hat{y}} + \frac{3}{4}c\mathbf{\hat{z}}$	(2c)	Fe I

References

- [1] C. J. Smithells, Metals Reference Book (Butterworths Scientific, London, 1955), second edn.
- [2] W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, International Series of Monographs on Metal Physics and Physical Metallurgy, vol. 4 (Pergamon Press, Oxford, London, Edinburgh, New York, Paris, Frankfort, 1958), 1964 reprint with corrections edn.
- [3] E. Parthé, L. Gelato, B. Chabot, M. Penso, K. Cenzula, and R. Gladyshevskii, Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Gmelin Handbook of Inorganic and Organometallic Chemistry, vol. 2 (Springer-Verlag, Berlin, Heidelberg, 1993), 8 edn., doi:10.1007/978-3-662-02909-1_3.
- S. B. Hendricks and P. R. Kosting, The Crystal Structure of Fe₂P, Fe₂N, Fe₃N and FeB, Z. ristallogr. 74, 511–533 (1930), doi:10.1524/zkri.1930.74.1.511.
- [5] W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Volume 2, International Series of Monographs on Metal Physics and Physical Metallurgy, vol. 8 (Pergamon Press, Oxford, London, Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig, 1967).