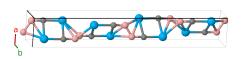
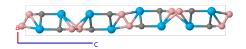
ThBC Structure:

ABC_tP24_95_d_d_d-001


This structure originally had the label ABC_tP24_95_d_d. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 2*, Comput. Mater. Sci. **161**, S1 (2019). doi: 10.1016/j.commatsci.2018.10.043

 $\rm https://aflow.org/p/8RZF$


 $https://aflow.org/p/ABC_tP24_95_d_d_d-001$

Prototype BCTh

AFLOW prototype label ABC_tP24_95_d_d_d-001

ICSD 2368

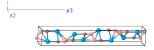
Pearson symbol tP24

Space group number 95

Space group symbol $P4_322$

AFLOW prototype command aflow --proto=ABC_tP24_95_d_d_d-001

--params= $a, c/a, x_1, y_1, z_1, x_2, y_2, z_2, x_3, y_3, z_3$


• This structure is identical to ThBC in the enantiomorphic space group $P4_122 \# 91$. It was generated from that structure by reflecting the atomic coordinates through the z=0 plane. The ICSD entry is written for space group # 91.

Simple Tetragonal primitive vectors

$$\mathbf{a}_1 = a \hat{\mathbf{x}}$$

$$\mathbf{a_2} = a\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c \, \hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
${f B_1}$	=	$x_1 \mathbf{a}_1 + y_1 \mathbf{a}_2 + z_1 \mathbf{a}_3$	=	$ax_1 \hat{\mathbf{x}} + ay_1 \hat{\mathbf{y}} + cz_1 \hat{\mathbf{z}}$	(8d)	ВІ
$\mathbf{B_2}$	=	$-x_1 \mathbf{a}_1 - y_1 \mathbf{a}_2 + \left(z_1 + \frac{1}{2}\right) \mathbf{a}_3$	=	$-ax_1\mathbf{\hat{x}}-ay_1\mathbf{\hat{y}}+c\left(z_1+\tfrac{1}{2}\right)\mathbf{\hat{z}}$	(8d)	ВІ
B_3	=	$-y_1 \mathbf{a}_1 + x_1 \mathbf{a}_2 + \left(z_1 + \frac{3}{4}\right) \mathbf{a}_3$	=	$-ay_1 \hat{\mathbf{x}} + ax_1 \hat{\mathbf{y}} + c \left(z_1 + \frac{3}{4}\right) \hat{\mathbf{z}}$	(8d)	ВІ
B_4	=	$y_1 \mathbf{a}_1 - x_1 \mathbf{a}_2 + \left(z_1 + \frac{1}{4}\right) \mathbf{a}_3$	=	$ay_1 \hat{\mathbf{x}} - ax_1 \hat{\mathbf{y}} + c \left(z_1 + \frac{1}{4}\right) \hat{\mathbf{z}}$	(8d)	ВІ
B_5	=	$-x_1\mathbf{a}_1 + y_1\mathbf{a}_2 - z_1\mathbf{a}_3$	=	$-ax_1\hat{\mathbf{x}} + ay_1\hat{\mathbf{y}} - cz_1\hat{\mathbf{z}}$	(8d)	ВІ
${f B_6}$	=	$x_1 \mathbf{a}_1 - y_1 \mathbf{a}_2 - \left(z_1 - \frac{1}{2}\right) \mathbf{a}_3$	=	$ax_1 \hat{\mathbf{x}} - ay_1 \hat{\mathbf{y}} - c \left(z_1 - \frac{1}{2}\right) \hat{\mathbf{z}}$	(8d)	ВІ
$\mathbf{B_7}$	=	$y_1 \mathbf{a}_1 + x_1 \mathbf{a}_2 - \left(z_1 - \frac{1}{4}\right) \mathbf{a}_3$	=	$ay_1\hat{\mathbf{x}} + ax_1\hat{\mathbf{y}} - c\left(z_1 - \frac{1}{4}\right)\hat{\mathbf{z}}$	(8d)	ВІ
${f B_8}$	=	$-y_1 \mathbf{a}_1 - x_1 \mathbf{a}_2 - \left(z_1 - \frac{3}{4}\right) \mathbf{a}_3$	=	$-ay_1 \hat{\mathbf{x}} - ax_1 \hat{\mathbf{y}} - c \left(z_1 - \frac{3}{4} \right) \hat{\mathbf{z}}$	(8d)	ВІ
${f B_9}$	=	$x_2 \mathbf{a}_1 + y_2 \mathbf{a}_2 + z_2 \mathbf{a}_3$	=	$ax_2\mathbf{\hat{x}} + ay_2\mathbf{\hat{y}} + cz_2\mathbf{\hat{z}}$	(8d)	CI
B_{10}	=	$-x_2 \mathbf{a}_1 - y_2 \mathbf{a}_2 + \left(z_2 + \frac{1}{2}\right) \mathbf{a}_3$	=	$-ax_2\mathbf{\hat{x}}-ay_2\mathbf{\hat{y}}+c\left(z_2+\tfrac{1}{2}\right)\mathbf{\hat{z}}$	(8d)	CI
B_{11}	=	$-y_2 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \left(z_2 + \frac{3}{4}\right) \mathbf{a}_3$	=	$-ay_2\mathbf{\hat{x}} + ax_2\mathbf{\hat{y}} + c\left(z_2 + \frac{3}{4}\right)\mathbf{\hat{z}}$	(8d)	CI
$\mathbf{B_{12}}$	=	$y_2 \mathbf{a}_1 - x_2 \mathbf{a}_2 + \left(z_2 + \frac{1}{4}\right) \mathbf{a}_3$	=	$ay_2\hat{\mathbf{x}} - ax_2\hat{\mathbf{y}} + c\left(z_2 + \frac{1}{4}\right)\hat{\mathbf{z}}$	(8d)	CI
B_{13}	=	$-x_2\mathbf{a}_1 + y_2\mathbf{a}_2 - z_2\mathbf{a}_3$	=	$-ax_2\mathbf{\hat{x}} + ay_2\mathbf{\hat{y}} - cz_2\mathbf{\hat{z}}$	(8d)	CI
$\mathbf{B_{14}}$	=	$x_2 \mathbf{a}_1 - y_2 \mathbf{a}_2 - \left(z_2 - \frac{1}{2}\right) \mathbf{a}_3$	=	$ax_2\hat{\mathbf{x}} - ay_2\hat{\mathbf{y}} - c\left(z_2 - \frac{1}{2}\right)\hat{\mathbf{z}}$	(8d)	CI
B_{15}	=	$y_2 \mathbf{a}_1 + x_2 \mathbf{a}_2 - \left(z_2 - \frac{1}{4}\right) \mathbf{a}_3$	=	$ay_2\hat{\mathbf{x}} + ax_2\hat{\mathbf{y}} - c\left(z_2 - \frac{1}{4}\right)\hat{\mathbf{z}}$	(8d)	CI
B_{16}	=	$-y_2 \mathbf{a}_1 - x_2 \mathbf{a}_2 - \left(z_2 - \frac{3}{4}\right) \mathbf{a}_3$	=	$-ay_2\mathbf{\hat{x}} - ax_2\mathbf{\hat{y}} - c\left(z_2 - \frac{3}{4}\right)\mathbf{\hat{z}}$	(8d)	CI
B_{17}	=	$x_3 \mathbf{a}_1 + y_3 \mathbf{a}_2 + z_3 \mathbf{a}_3$	=	$ax_3\mathbf{\hat{x}} + ay_3\mathbf{\hat{y}} + cz_3\mathbf{\hat{z}}$	(8d)	Th I
B_{18}	=	$-x_3 \mathbf{a}_1 - y_3 \mathbf{a}_2 + \left(z_3 + \frac{1}{2}\right) \mathbf{a}_3$	=	$-ax_3\mathbf{\hat{x}}-ay_3\mathbf{\hat{y}}+c\left(z_3+\tfrac{1}{2}\right)\mathbf{\hat{z}}$	(8d)	Th I
${f B_{19}}$	=	$-y_3 \mathbf{a}_1 + x_3 \mathbf{a}_2 + \left(z_3 + \frac{3}{4}\right) \mathbf{a}_3$	=	$-ay_3 \hat{\mathbf{x}} + ax_3 \hat{\mathbf{y}} + c \left(z_3 + \frac{3}{4}\right) \hat{\mathbf{z}}$	(8d)	Th I
${f B_{20}}$	=	$y_3 \mathbf{a}_1 - x_3 \mathbf{a}_2 + \left(z_3 + \frac{1}{4}\right) \mathbf{a}_3$	=	$ay_3 \hat{\mathbf{x}} - ax_3 \hat{\mathbf{y}} + c \left(z_3 + \frac{1}{4}\right) \hat{\mathbf{z}}$	(8d)	Th I
${f B_{21}}$	=	$-x_3 \mathbf{a}_1 + y_3 \mathbf{a}_2 - z_3 \mathbf{a}_3$	=	$-ax_3\hat{\mathbf{x}} + ay_3\hat{\mathbf{y}} - cz_3\hat{\mathbf{z}}$	(8d)	Th I
$\mathbf{B_{22}}$	=	$x_3 \mathbf{a}_1 - y_3 \mathbf{a}_2 - \left(z_3 - \frac{1}{2}\right) \mathbf{a}_3$	=	$ax_3\hat{\mathbf{x}} - ay_3\hat{\mathbf{y}} - c\left(z_3 - \frac{1}{2}\right)\hat{\mathbf{z}}$	(8d)	Th I
${f B_{23}}$	=	$y_3 \mathbf{a}_1 + x_3 \mathbf{a}_2 - \left(z_3 - \frac{1}{4}\right) \mathbf{a}_3$	=	$ay_3 \hat{\mathbf{x}} + ax_3 \hat{\mathbf{y}} - c \left(z_3 - \frac{1}{4}\right) \hat{\mathbf{z}}$	(8d)	Th I
$\mathbf{B_{24}}$	=	$-y_3 \mathbf{a}_1 - x_3 \mathbf{a}_2 - \left(z_3 - \frac{3}{4}\right) \mathbf{a}_3$	=	$-ay_3\mathbf{\hat{x}} - ax_3\mathbf{\hat{y}} - c\left(z_3 - \frac{3}{4}\right)\mathbf{\hat{z}}$	(8d)	Th I

References

 $[1] \ \ P. \ Rogl, \ \mathit{The Crystal Structure of ThBC}, \ J. \ Nucl. \ Mat. \ \textbf{73}, \ 198-203 \ (1978), \ doi: 10.1016/0022-3115(78)90560-3.$