MoAlB Structure: ABC_oC12_63_c_c_c-005

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. In preparation.

		https://aflow.org/p/XSM0		
AI B Mo		https://aflow.org/p/ABC_oC12_63_c_c_c-005		
Prototype	AlBMo			
AFLOW prototype label	ABC_oC12_63_c_c_005			
ICSD	251808			
Pearson symbol	oC12			
Space group number	63			
Space group symbol	Cmcm			
AFLOW prototype command	aflowproto=ABC_oC12_e params=a,b/a,c/a	53_c_c_c-005 , y ₁ , y ₂ , y ₃		

Other compounds with this structure NbNiB, MgNiTb, WAlB

- (Ade, 2015) give atomic positions for WAIB that do not reproduce their interatomic distances and make the W-B distance far too small. We find that the parameters $(y_{Al}, y_B, y_W) = (0.19950, 0.03547, 0.41002)$ reproduce the reported distances.
- The ICSD entry gives the structure type as UBC, but XtalFinder (Hicks, 2021) finds that the structures are essentially unmatchable.

Base-centered Orthorhombic primitive vectors

 $= \frac{1}{2}a\,\mathbf{\hat{x}} - \frac{1}{2}b\,\mathbf{\hat{y}}$ $\mathbf{a_1}$ $= \frac{1}{2}a\,\mathbf{\hat{x}} + \frac{1}{2}b\,\mathbf{\hat{y}}$ $\mathbf{a_2}$ $c \hat{\mathbf{z}}$ $a_3 =$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
B_1	=	$-y_1 \mathbf{a}_1 + y_1 \mathbf{a}_2 + \frac{1}{4} \mathbf{a}_3$	=	$by_1\mathbf{\hat{y}} + \frac{1}{4}c\mathbf{\hat{z}}$	(4c)	Al I
B_2	=	$y_1 {f a}_1 - y_1 {f a}_2 + rac{3}{4} {f a}_3$	=	$-by_1\mathbf{\hat{y}}+rac{3}{4}c\mathbf{\hat{z}}$	(4c)	Al I
B_3	=	$-y_2 \mathbf{a}_1 + y_2 \mathbf{a}_2 + rac{1}{4} \mathbf{a}_3$	=	$by_2{f \hat y}+rac{1}{4}c{f \hat z}$	(4c)	ΒI
\mathbf{B}_4	=	$y_2 \mathbf{a}_1 - y_2 \mathbf{a}_2 + rac{3}{4} \mathbf{a}_3$	=	$-by_2\mathbf{\hat{y}}+rac{3}{4}c\mathbf{\hat{z}}$	(4c)	ΒI
B_5	=	$-y_3{f a}_1+y_3{f a}_2+rac{1}{4}{f a}_3$	=	$by_3{f \hat y}+rac{1}{4}c{f \hat z}$	(4c)	Mo I
\mathbf{B}_{6}	=	$y_3 {f a}_1 - y_3 {f a}_2 + rac{3}{4} {f a}_3$	=	$-by_3\mathbf{\hat{y}}+rac{3}{4}c\mathbf{\hat{z}}$	(4c)	Mo I

References

- [1] M. Ade and H. Hillebrecht, Ternary Borides Cr_2AlB_2 , Cr_2AlB_4 , and Cr_4AlB_6 : The First Members of the Series $(CrB_2)_n CrAl$ with n = 1, 2, 3 and a Unifying Concept for Ternary Borides as MAB-Phases, Inorg. Chem. 54, 6122–6135 (2015), doi:10.1021/acs.inorgchem.5b00049.
- [2] D. Hicks, C. Toher, D. C. Ford, F. Rose, C. D. Santo, O. Levy, M. J. Mehl, and S. Curtarolo, AFLOW-XtalFinder: a reliable choice to identify crystalline prototypes 7, 30 (2021), doi:10.1038/s41524-020-00483-4.

Found in

 H. Zhang, J. Kim, R. Su, P. Richardson, J. Xi, E. Kisi, J. O'Connor, L. Shi, and I. Szlufarska, Defect behavior and radiation tolerance of MAB phases (MoAlB and Fe₂AlB₂) with comparison to MAX phases, Acta Mater. **196**, 505–515 (2020), doi:10.1016/j.actamat.2020.07.002.