$\mathrm{NH}_{4} \mathrm{NO}_{3} \mathrm{II}\left(\mathrm{GO}_{9}\right)$ Structure:
ABC3_tP10_100_b_a_bc-001
This structure originally had the label ABC3_tP10_100_b_a_bc. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comput. Mater. Sci. 199, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

Prototype

AFLOW prototype label
Strukturbericht designation
ICSD
Pearson symbol
Space group number
Space group symbol
AFLOW prototype command
$\mathrm{N}\left(\mathrm{NH}_{4}\right) \mathrm{O}_{3}$
ABC3_tP10_100_b_a_bc-001
$G 0_{9}$
none
tP10
100
P4bm
aflow --proto=ABC3_tP10_100_b_a_bc-001
--params $=a, c / a, z_{1}, z_{2}, z_{3}, x_{4}, z_{4}$

- Ammonium Nitrate exists in a variety of forms, (Hermann, 1937) depending on the temperature:

Phase	Temperature ${ }^{\circ} \mathrm{C}$	Strukturbericht	Page	
I	$125-170$	$G 0_{8}$	$G 0_{9}$	AB_cP2_221_a_b-001

- Data for this structure was taken at $60^{\circ} \mathrm{C}$.
- The positions of the hydrogen atoms were not determined. The isolated nitrogen atoms in this structure's visualization are surrounded by four hydrogen atoms in an approximately tetrahedral arrangement. It is likely that the NH_{4} radicals are free to rotate (Kracek, 1937).
- Both (Shinnaka, 1956) and (Hermann, 1937) state that the available X-ray diffraction data supports a space group of either $P 4 b m \# 100$ or $P \overline{4} 2_{1} m \# 113$. The atomic positions found by Shinnaka agree with space group $P 4 b m$.
- (Shinnaka, 1956) states that the NO_{3} nitrate groups are rotating, but this rotation "is almost bound in two orientations (in opposite directions)." He then gives two possible orientations for the nitrate. We present the first orientation here. The second orientation is obtained by taking $z_{3} \rightarrow-z_{3}$ and $z_{4} \rightarrow-z_{4}$.
- Another way of presenting this information would be to add a second nitrate group to the primitive cell, and set the occupation of all the atoms in the nitrates at 50%. This would give a structure in space group $P 4 / m b m \# 127$, which might be useful as a pictorial representation but does not correctly represent the physics of the crystal, as the nitrogen and oxygen atoms in an individual nitrate radical must remain together.
- The N-O distances in this structure are about 10% smaller than the distances found in the other phases of $\mathrm{NH}_{4} \mathrm{NO}_{3}$. This suggests that the structure should be reevaluated.

Simple Tetragonal primitive vectors

$$
\begin{aligned}
& \mathbf{a}_{\mathbf{1}}=a \hat{\mathbf{x}} \\
& \mathbf{a}_{\mathbf{2}}=a \hat{\mathbf{y}} \\
& \mathbf{a}_{\mathbf{3}}=c \hat{\mathbf{z}}
\end{aligned}
$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
B_{1}	$=$	$z_{1} \mathbf{a}_{3}$	$=$	$c z_{1} \hat{\mathbf{Z}}$	(2a)	NH I
B_{2}	$=$	$\frac{1}{2} \mathbf{a}_{1}+\frac{1}{2} \mathbf{a}_{2}+z_{1} \mathbf{a}_{3}$	$=$	$\frac{1}{2} a \hat{\mathbf{x}}+\frac{1}{2} a \hat{\mathbf{y}}+c z_{1} \hat{\mathbf{z}}$	(2a)	NH I
B_{3}	$=$	$\frac{1}{2} \mathbf{a}_{1}+z_{2} \mathbf{a}_{3}$	$=$	$\frac{1}{2} a \hat{\mathbf{x}}+c z_{2} \hat{\mathbf{z}}$	(2b)	N I
B_{4}	$=$	$\frac{1}{2} \mathbf{a}_{2}+z_{2} \mathbf{a}_{3}$	$=$	$\frac{1}{2} a \hat{\mathbf{y}}+c z_{2} \hat{\mathbf{z}}$	(2b)	N I
B_{5}	$=$	$\frac{1}{2} \mathbf{a}_{1}+z_{3} \mathbf{a}_{3}$	$=$	$\frac{1}{2} a \hat{\mathbf{x}}+c z_{3} \hat{\mathbf{z}}$	(2b)	O I
B_{6}	$=$	$\frac{1}{2} \mathbf{a}_{2}+z_{3} \mathbf{a}_{3}$	$=$	$\frac{1}{2} a \hat{\mathbf{y}}+c z_{3} \hat{\mathbf{z}}$	(2b)	O I
B_{7}	$=$	$x_{4} \mathbf{a}_{1}+\left(x_{4}+\frac{1}{2}\right) \mathbf{a}_{2}+z_{4} \mathbf{a}_{3}$	$=$	$a x_{4} \hat{\mathbf{x}}+a\left(x_{4}+\frac{1}{2}\right) \hat{\mathbf{y}}+c z_{4} \hat{\mathbf{z}}$	(4c)	O II
B_{8}	$=$	$-x_{4} \mathbf{a}_{1}-\left(x_{4}-\frac{1}{2}\right) \mathbf{a}_{2}+z_{4} \mathbf{a}_{3}$	$=$	$-a x_{4} \hat{\mathbf{x}}-a\left(x_{4}-\frac{1}{2}\right) \hat{\mathbf{y}}+c z_{4} \hat{\mathbf{z}}$	(4c)	O II
B_{9}	$=$	$-\left(x_{4}-\frac{1}{2}\right) \mathbf{a}_{1}+x_{4} \mathbf{a}_{2}+z_{4} \mathbf{a}_{3}$	$=$	$-a\left(x_{4}-\frac{1}{2}\right) \hat{\mathbf{x}}+a x_{4} \hat{\mathbf{y}}+c z_{4} \hat{\mathbf{z}}$	(4c)	O II
B_{10}		$\left(x_{4}+\frac{1}{2}\right) \mathbf{a}_{1}-x_{4} \mathbf{a}_{2}+z_{4} \mathbf{a}_{3}$	$=$	$a\left(x_{4}+\frac{1}{2}\right) \hat{\mathbf{x}}-a x_{4} \hat{\mathbf{y}}+c z_{4} \hat{\mathbf{z}}$	(4c)	O II

References

[1] Y. Shinnaka, On the Metastable Transition and the Crystal Structure of Ammonium Nitrate (Tetragonal Modification), J. Phys. Soc. Jpn. 11, 393-396 (1956), doi 10.1143/JPSJ.11.393
[2] C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928-1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
[3] F. C. Kracek, S. B. Hendricks, and E. Posnjak, Group Rotation in Soid Ammonium and Calcium Nitrates, Nature 128, 410-411 (1931), doi $10.1038 / 128410 \mathrm{b0}$.

Found in

[1] C. S. Choi, J. E. Mapes, and E. Prince, The structure of ammonium nitrate (IV), Acta Crystallogr. Sect. B 28, 1357-1361 (1972), doi 10.1107/S0567740872004303.

