$\rm NH_4NO_3$ II (GO_9) Structure: ABC3_tP10_100_b_a_bc-001

This structure originally had the label ABC3_tP10_100_b_a_bc. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 3*, Comput. Mater. Sci. **199**, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

https://aflow.org/p/80PK

https://aflow.org/p/ABC3_tP10_100_b_a_bc-001

Prototype	$N(NH_4)O_3$
AFLOW prototype label	$ABC3_tP10_100_b_a_bc-001$
Strukturbericht designation	$G0_9$
ICSD	none
Pearson symbol	tP10
Space group number	100
Space group symbol	P4bm
AFLOW prototype command	aflowproto=ABC3_tP10_100_b_a_bc-001 params= $a, c/a, z_1, z_2, z_3, x_4, z_4$

• Ammonium Nitrate exists in a variety of forms, (Hermann, 1937) depending on the temperature:

Phase	Temperature $^{\circ}\mathrm{C}$	Strukturbericht	Page	
Ι	125 - 170	$G0_8$	AB_cP2_221_a_b-001	
II	84 - 125	$G0_9$	ABC3_tP10_100_b_a_bc	(this structure)
III	32 - 84	$G0_{10}$	ABC3_0P20_62_c_c_d-002	
IV	-18 - 32	$G0_{11}$	A4B2C3_oP18_59_ef_ab_af-001	
V	< -18		$A4B2C3_{t}P72_{7}7_{8}d_{a}b2c2d_{6}d2-001$	

- Data for this structure was taken at 60°C.
- The positions of the hydrogen atoms were not determined. The isolated nitrogen atoms in this structure's visualization are surrounded by four hydrogen atoms in an approximately tetrahedral arrangement. It is likely that the NH_4 radicals are free to rotate (Kracek, 1937).
- Both (Shinnaka, 1956) and (Hermann, 1937) state that the available X-ray diffraction data supports a space group of either P4bm #100 or P42₁m #113. The atomic positions found by Shinnaka agree with space group P4bm.
- (Shinnaka, 1956) states that the NO₃ nitrate groups are rotating, but this rotation "is almost bound in two orientations (in opposite directions)." He then gives two possible orientations for the nitrate. We present the first orientation here. The second orientation is obtained by taking $z_3 \rightarrow -z_3$ and $z_4 \rightarrow -z_4$.
- Another way of presenting this information would be to add a second nitrate group to the primitive cell, and set the occupation of all the atoms in the nitrates at 50%. This would give a structure in space group P4/mbm #127, which might be useful as a pictorial representation but does not correctly represent the physics of the crystal, as the nitrogen and oxygen atoms in an individual nitrate radical must remain together.
- The N–O distances in this structure are about 10% smaller than the distances found in the other phases of NH₄NO₃. This suggests that the structure should be reevaluated.

Simple Tetragonal primitive vectors

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
B_1	=	$z_1 {f a}_3$	=	$cz_1 {f \hat z}$	(2a)	NH I
B_2	=	$rac{1}{2}{f a}_1+rac{1}{2}{f a}_2+z_1{f a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{1}{2}a\hat{\mathbf{y}} + cz_1\hat{\mathbf{z}}$	(2a)	NH I
B_3	=	$rac{1}{2}{f a}_1+z_2{f a}_3$	=	$rac{1}{2}a\mathbf{\hat{x}}+cz_{2}\mathbf{\hat{z}}$	(2b)	ΝI
$\mathbf{B_4}$	=	$rac{1}{2} \mathbf{a}_2 + z_2 \mathbf{a}_3$	=	$rac{1}{2}a\mathbf{\hat{y}}+cz_{2}\mathbf{\hat{z}}$	(2b)	ΝI
B_5	=	$rac{1}{2}\mathbf{a}_1+z_3\mathbf{a}_3$	=	$rac{1}{2}a\mathbf{\hat{x}}+cz_{3}\mathbf{\hat{z}}$	(2b)	ΟΙ
\mathbf{B}_{6}	=	$rac{1}{2}{f a}_2+z_3{f a}_3$	=	$rac{1}{2}a\mathbf{\hat{y}}+cz_{3}\mathbf{\hat{z}}$	(2b)	ΟΙ
B_7	=	$x_4 \mathbf{a}_1 + \left(x_4 + \frac{1}{2}\right) \mathbf{a}_2 + z_4 \mathbf{a}_3$	=	$ax_4\mathbf{\hat{x}} + a\left(x_4 + \frac{1}{2}\right)\mathbf{\hat{y}} + cz_4\mathbf{\hat{z}}$	(4c)	O II
$\mathbf{B_8}$	=	$-x_4 \mathbf{a}_1 - \left(x_4 - \frac{1}{2}\right) \mathbf{a}_2 + z_4 \mathbf{a}_3$	=	$-ax_4\mathbf{\hat{x}}-a\left(x_4-rac{1}{2} ight)\mathbf{\hat{y}}+cz_4\mathbf{\hat{z}}$	(4c)	O II
\mathbf{B}_{9}	=	$-\left(x_4 - \frac{1}{2}\right) \mathbf{a}_1 + x_4 \mathbf{a}_2 + z_4 \mathbf{a}_3$	=	$-a\left(x_4-rac{1}{2} ight)\mathbf{\hat{x}}+ax_4\mathbf{\hat{y}}+cz_4\mathbf{\hat{z}}$	(4c)	O II
B_{10}	=	$\left(x_4 + \frac{1}{2}\right) \mathbf{a}_1 - x_4 \mathbf{a}_2 + z_4 \mathbf{a}_3$	=	$a\left(x_4+\frac{1}{2} ight)\hat{\mathbf{x}}-ax_4\hat{\mathbf{y}}+cz_4\hat{\mathbf{z}}$	(4c)	O II

References

 Y. Shinnaka, On the Metastable Transition and the Crystal Structure of Ammonium Nitrate (Tetragonal Modification), J. Phys. Soc. Jpn. 11, 393–396 (1956), doi:10.1143/JPSJ.11.393.

- [2] C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928-1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
- [3] F. C. Kracek, S. B. Hendricks, and E. Posnjak, Group Rotation in Soid Ammonium and Calcium Nitrates, Nature 128, 410–411 (1931), doi:10.1038/128410b0.

Found in

C. S. Choi, J. E. Mapes, and E. Prince, *The structure of ammonium nitrate (IV)*, Acta Crystallogr. Sect. B 28, 1357–1361 (1972), doi:10.1107/S0567740872004303.