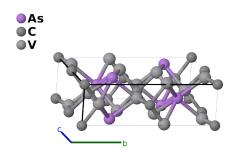
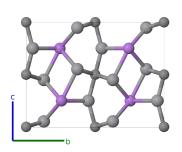
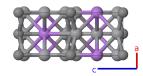
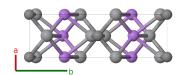
V₃AsC Structure:


ABC3_oC20_63_c_a_cf-003


This structure originally had the label ABC3_oC20_63_c_b_cf. Calls to that address will be redirected here.


Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 3*, Comput. Mater. Sci. **199**, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.


https://aflow.org/p/2T8B

https://aflow.org/p/ABC3_oC20_63_c_a_cf-003

Prototype $AsCV_3$

AFLOW prototype label ABC3_oC20_63_c_a_cf-003

ICSD 25761

Pearson symbol oC20

Space group number 63

Space group symbol Cmcm

AFLOW prototype command aflow --proto=ABC3_oC20_63_c_a_cf-003

--params= $a, b/a, c/a, y_2, y_3, y_4, z_4$

Other compounds with this structure

V₃PC, V₃PN, V₃AsN, Cr₃PC, Cr₃AsC, Zr₃AlN, UScS₃

- This structure is a "filled" version of the Re₃B structure, with carbon atoms sitting in the (4b) Wyckoff positions. This is the ternary version of the structure. The quaternary version, where all Wyckoff positions contain different species of atoms, is listed as the ThFe₂SiC structure.
- We have shifted the origin to move the first of the C I atoms to the origin.

Base-centered Orthorhombic primitive vectors

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{1}{2}b\,\hat{\mathbf{y}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}b\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c\,\hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	$\begin{array}{c} \text{Atom} \\ \text{type} \end{array}$
${f B_1}$	=	0	=	0	(4a)	CI
$\mathbf{B_2}$	=	$rac{1}{2}\mathbf{a}_3$	=	$rac{1}{2}c\mathbf{\hat{z}}$	(4a)	CI
$\mathbf{B_3}$	=	$-y_2\mathbf{a}_1 + y_2\mathbf{a}_2 + \frac{1}{4}\mathbf{a}_3$	=	$by_2\mathbf{\hat{y}}+rac{1}{4}c\mathbf{\hat{z}}$	(4c)	As I
$\mathbf{B_4}$	=	$y_2\mathbf{a}_1 - y_2\mathbf{a}_2 + \frac{3}{4}\mathbf{a}_3$	=	$-by_2\mathbf{\hat{y}}+rac{3}{4}c\mathbf{\hat{z}}$	(4c)	As I
${f B_5}$	=	$-y_3\mathbf{a}_1+y_3\mathbf{a}_2+\frac{1}{4}\mathbf{a}_3$	=	$by_3\mathbf{\hat{y}}+rac{1}{4}c\mathbf{\hat{z}}$	(4c)	VI
${f B_6}$	=	$y_3\mathbf{a}_1 - y_3\mathbf{a}_2 + \frac{3}{4}\mathbf{a}_3$	=	$-by_3\mathbf{\hat{y}}+rac{3}{4}c\mathbf{\hat{z}}$	(4c)	VI
$\mathbf{B_7}$	=	$-y_4\mathbf{a}_1 + y_4\mathbf{a}_2 + z_4\mathbf{a}_3$	=	$by_4\mathbf{\hat{y}}+cz_4\mathbf{\hat{z}}$	(8f)	V II
$\mathbf{B_8}$	=	$y_4 \mathbf{a}_1 - y_4 \mathbf{a}_2 + \left(z_4 + \frac{1}{2}\right) \mathbf{a}_3$	=	$-by_4\hat{\mathbf{y}} + c(z_4 + \frac{1}{2})\hat{\mathbf{z}}$	(8f)	V II
$\mathbf{B_9}$	=	$-y_4 \mathbf{a}_1 + y_4 \mathbf{a}_2 - \left(z_4 - \frac{1}{2}\right) \mathbf{a}_3$	=	$by_4\hat{\mathbf{y}} - c(z_4 - \frac{1}{2})\hat{\mathbf{z}}$	(8f)	V II
$\mathbf{B_{10}}$	=	$y_4 \mathbf{a}_1 - y_4 \mathbf{a}_2 - z_4 \mathbf{a}_3$	=	$-by_4\mathbf{\hat{y}}-cz_4\mathbf{\hat{z}}$	(8f)	V II

References

[1] H. Boller and H. Nowotny, Zum Dreistoff: Vanadin-Arsen-Kohlenstoff, Monatsh. Chem. 98, 2127–2132 (1967), doi:10.1007/BF01167176.

Found in

[1] A. M. Witte and W. Jeitschko, *Carbides with Filled Re₃B-Type Structure*, J. Solid State Chem. **112**, 232–236 (1994), doi:10.1006/jssc.1994.1297.