γ-Potassium Nitrate $\left(\mathrm{KNO}_{3}\right)$ Structure:

ABC3_hR5_160_a_a_b-002

This structure originally had the label ABC3_hR5_160_a_a_b. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comput. Mater. Sci. 199, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

Other compounds with this structure
$\mathrm{NH}_{4} \mathrm{ClO}_{4}, \mathrm{BaTiO}_{3}$

- On heating, $\alpha-\mathrm{KNO}_{3}$ (either Structure I or Structure II) transforms into $\beta-\mathrm{KNO}_{3}$ at $128^{\circ} \mathrm{C}$. When heated above $200^{\circ} \mathrm{C}$ and then cooled, the β phase transforms into the metastable ferroelectric $\gamma-\mathrm{KNO}_{3}$ phase, which can remain down to room temperature.
- (Nimmo, 1976) give the data for $\gamma-\mathrm{KNO}_{3}$ taken at $91^{\circ} \mathrm{C}$.
- Although this is isostructural with the $\mathrm{KBrO}_{3}\left(G 0_{7}\right)$ structure, we have included it here to facilitate the comparison of the various KNO_{3} phases.
- γ - KNO_{3} and $\mathrm{KBrO}_{3}\left(G 0_{7}\right)$ have the same AFLOW prototype label, ABC3_hR5_160_a_a_b. They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.
- Hexagonal settings rhombohedral structures can be obtained with the option --hex.

Rhombohedral primitive vectors

$$
\begin{array}{lc}
\mathbf{a}_{\mathbf{1}} & = \\
\frac{1}{2} a \hat{\mathbf{x}}-\frac{\sqrt{3}}{6} a \hat{\mathbf{y}}+\frac{1}{3} c \hat{\mathbf{z}} \\
\mathbf{a}_{2} & = \\
\mathbf{a}_{\mathbf{3}} & = \\
\frac{1}{\sqrt{3}} a \hat{\mathbf{y}}+\frac{1}{3} c \hat{\mathbf{z}} \\
\hline \mathbf{\mathbf { x }}-\frac{\sqrt{3}}{6} a \hat{\mathbf{y}}+\frac{1}{3} c \hat{\mathbf{z}}
\end{array}
$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
B_{1}	$=$	$x_{1} \mathbf{a}_{1}+x_{1} \mathbf{a}_{2}+x_{1} \mathbf{a}_{3}$	$=$	$c x_{1} \hat{\mathbf{z}}$	(1a)	K I
B_{2}	$=$	$x_{2} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{2} \mathbf{a}_{3}$	$=$	$c x_{2} \hat{\mathbf{z}}$	(1a)	N I
B_{3}	$=$	$x_{3} \mathbf{a}_{1}+x_{3} \mathbf{a}_{2}+z_{3} \mathbf{a}_{3}$	$=$	$\begin{gathered} \frac{1}{2} a\left(x_{3}-z_{3}\right) \hat{\mathbf{x}}+\frac{\sqrt{3}}{6} a\left(x_{3}-z_{3}\right) \hat{\mathbf{y}}+ \\ \frac{1}{3} c\left(2 x_{3}+z_{3}\right) \hat{\mathbf{z}} \end{gathered}$	(3b)	O I
B_{4}	$=$	$z_{3} \mathbf{a}_{1}+x_{3} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}$	$=$	$\begin{gathered} -\frac{1}{2} a\left(x_{3}-z_{3}\right) \hat{\mathbf{x}}+\frac{\sqrt{3}}{6} a\left(x_{3}-z_{3}\right) \hat{\mathbf{y}}+ \\ \frac{1}{3} c\left(2 x_{3}+z_{3}\right) \hat{\mathbf{z}} \end{gathered}$	(3b)	O I
B_{5}	$=$	$x_{3} \mathbf{a}_{1}+z_{3} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}$	$=$	$-\frac{1}{\sqrt{3}} a\left(x_{3}-z_{3}\right) \hat{\mathbf{y}}+\frac{1}{3} c\left(2 x_{3}+z_{3}\right) \hat{\mathbf{z}}$	(3b)	O I

References

[1] J. K. Nimmo and B. W. Lucas, The crystal structures of γ-and β-KNO3 and the $\alpha-\beta-\gamma$ phase transformations, Acta Crystallogr. Sect. B 32 (1976), doi 10.1107/S0567740876006894.

Found in

[1] R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247-250 (2003).

