Ferroelectric LiNbO₃ Structure: ABC3_hR10_161_a_a_b-001

This structure originally had the label ABC3_hR10_161_a_a_b. Calls to that address will be redirected here.

Cite this page as: M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallo-graphic Prototypes: Part 1*, Comput. Mater. Sci. **136**, S1-828 (2017). doi: 10.1016/j.commatsci.2017.01.017

https://aflow.org/p/FZF0

https://aflow.org/p/ABC3_hR10_161_a_a_b-001

Prototype	$ m LiNbO_3$		
AFLOW prototype label	ABC3_hR10_161_a_a_b-001		
ICSD	81243		
Pearson symbol	hR10		
Space group number	161		
Space group symbol	R3c		
AFLOW prototype command	aflowproto=ABC3_hR10_161_a_a_b-001 params= $a, c/a, x_1, x_2, x_3, y_3, z_3$		

Other compounds with this structure BiFeO₃, CsPbF₃

• This is the ferroelectric phase of LiNbO₃, which is stable below 1430K. There is also a high-temperature paraelectric phase.

• In the special case $c/a = \sqrt{6}$, $z_1 = 1/4$, $z_2 = 0$, $x_3 = 1/2$, $y_3 = 0$, $z_3 = 0$ this reduces to a double unit cell version of the cubic perovskite (E2₁) structure. This sets the angle between the rhombohedral primitive vectors to 60°. Experimentally the value is about 56°.

Rhombohedral primitive vectors

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\,\hat{\mathbf{y}} + \frac{1}{3}c\,\hat{\mathbf{z}}$$

$$\mathbf{a_2} = \frac{1}{\sqrt{3}}a\,\hat{\mathbf{y}} + \frac{1}{3}c\,\hat{\mathbf{z}}$$

$$\mathbf{a_3} = -\frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\,\hat{\mathbf{y}} + \frac{1}{3}c\,\hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$x_1 \mathbf{a}_1 + x_1 \mathbf{a}_2 + x_1 \mathbf{a}_3$	=	$cx_1 {f \hat{z}}$	(2a)	Li I
B_2	=	$\begin{pmatrix} x_1 + \frac{1}{2} \end{pmatrix} \mathbf{a}_1 + \begin{pmatrix} x_1 + \frac{1}{2} \end{pmatrix} \mathbf{a}_2 + \\ \begin{pmatrix} x_1 + \frac{1}{2} \end{pmatrix} \mathbf{a}_3 \end{pmatrix}$	=	$c\left(x_1+rac{1}{2} ight)\hat{\mathbf{z}}$	(2a)	Li I
$\mathbf{B_3}$	=	$x_2 \mathbf{a}_1 + x_2 \mathbf{a}_2 + x_2 \mathbf{a}_3$	=	$cx_2 \hat{\mathbf{z}}$	(2a)	Nb I
B_4	=	$egin{pmatrix} \left(x_2+rac{1}{2} ight) \mathbf{a}_1 + \left(x_2+rac{1}{2} ight) \mathbf{a}_2 + \ \left(x_2+rac{1}{2} ight) \mathbf{a}_3 \end{split}$	=	$c\left(x_2+rac{1}{2} ight) \hat{\mathbf{z}}$	(2a)	Nb I
B_5	=	$x_3 \mathbf{a}_1 + y_3 \mathbf{a}_2 + z_3 \mathbf{a}_3$	=	$\frac{\frac{1}{2}a(x_3 - z_3) \hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a(x_3 - 2y_3 + z_3) \hat{\mathbf{y}} + \frac{1}{3}c(x_3 + y_3 + z_3) \hat{\mathbf{z}}$	(6b)	ΟΙ
B_6	=	$z_3 \mathbf{a}_1 + x_3 \mathbf{a}_2 + y_3 \mathbf{a}_3$	=	$\begin{array}{c} -\frac{1}{2}a\left(y_{3}-z_{3}\right)\hat{\mathbf{x}}+\frac{\sqrt{3}}{6}a\left(2x_{3}-y_{3}-z_{3}\right)\hat{\mathbf{y}}+\\ -\frac{1}{3}c\left(x_{3}+y_{3}+z_{3}\right)\hat{\mathbf{z}}\end{array}$	(6b)	ΟΙ
B7	=	$y_3 \mathbf{a}_1 + z_3 \mathbf{a}_2 + x_3 \mathbf{a}_3$	=	$\begin{array}{c} -\frac{1}{2}a\left(x_{3}-y_{3}\right)\hat{\mathbf{x}}-\frac{\sqrt{3}}{6}a\left(x_{3}+y_{3}-2z_{3}\right)\hat{\mathbf{y}}+\\ -\frac{1}{3}c\left(x_{3}+y_{3}+z_{3}\right)\hat{\mathbf{z}}\end{array}$	(6b)	ΟΙ
B ₈	=	$egin{pmatrix} \left(z_3+rac{1}{2} ight) {f a}_1 + \left(y_3+rac{1}{2} ight) {f a}_2 + \ \left(x_3+rac{1}{2} ight) {f a}_3 \end{split}$	=	$ \begin{array}{c} -\frac{1}{2}a\left(x_{3}-z_{3}\right)\hat{\mathbf{x}}-\frac{\sqrt{3}}{6}a\left(x_{3}-2y_{3}+z_{3}\right)\hat{\mathbf{y}}+\\ \frac{1}{6}c\left(2x_{3}+2y_{3}+2z_{3}+3\right)\hat{\mathbf{z}} \end{array} $	(6b)	ΟΙ
B 9	=	$egin{pmatrix} \left(y_3+rac{1}{2} ight) \mathbf{a}_1 + \left(x_3+rac{1}{2} ight) \mathbf{a}_2 + \ \left(z_3+rac{1}{2} ight) \mathbf{a}_3 \end{split}$	=	$\frac{\frac{1}{2}a(y_3 - z_3) \hat{\mathbf{x}} + \frac{\sqrt{3}}{6}a(2x_3 - y_3 - z_3) \hat{\mathbf{y}} + \frac{1}{6}c(2x_3 + 2y_3 + 2z_3 + 3) \hat{\mathbf{z}}}$	(6b)	ΟΙ
B ₁₀	=	$ig(x_3+rac{1}{2}ig) {f a}_1 + ig(z_3+rac{1}{2}ig) {f a}_2 + ig(y_3+rac{1}{2}ig) {f a}_3$	=	$\frac{\frac{1}{2}a(x_3 - y_3) \mathbf{\hat{x}} - \frac{\sqrt{3}}{6}a(x_3 + y_3 - 2z_3) \mathbf{\hat{y}} + \frac{1}{6}c(2x_3 + 2y_3 + 2z_3 + 3) \mathbf{\hat{z}}$	(6b)	ΟΙ

References

 H. Boysen and F. Altorfer, A neutron powder investigation of the high-temperature structure and phase transition in LiNbO₃, Acta Crystallogr. Sect. B 50, 405–414 (1994), doi:10.1107/S0108768193012820.