
High Temperature GdBO₃ Structure: ABC3_hP10_194_c_a_h-002

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 4*. In preparation.

https://aflow.org/p/R6VB

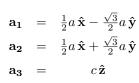
 $https://aflow.org/p/ABC3_hP10_194_c_a_h-002$

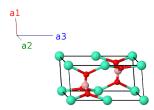
Prototype $BGdO_3$

AFLOW prototype label ABC3_hP10_194_c_a_h-002

ICSD 87779
Pearson symbol hP10
Space group number 194

Space group symbol $P6_3/mmc$


 ${\bf AFLOW\ prototype\ command} \qquad {\tt aflow\ --proto=ABC3_hP10_194_c_a_h-002}$


--params= $a, c/a, x_3$

- (Ren, 1999) found two structures for GdBO₃: a low-temperature rhombohedral structure, and this high-temperature hexagonal structure.
- There is large thermal hysteresis in this system, with the LT \rightarrow HT transition taking place at 1109K and the HT \rightarrow LT transition at 819K.

- (Ren, 1999) list YBO₃ as the prototype for this phase, but although related it differs from both our ordered and disordered YBO₃ structures.
- This structure has the same AFLOW label, ABC3_hP10_194_c_a_h, as the BaNiO₃ structure, but the c/a ration of GdBO₃ is more than twice that of BaNiO₃, so we treat them as different structures. The structures are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.

Hexagonal primitive vectors

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
${f B_1}$	=	0	=	0	(2a)	$\operatorname{Gd} I$
$\mathbf{B_2}$	=	$rac{1}{2}\mathbf{a}_3$	=	$rac{1}{2}c\mathbf{\hat{z}}$	(2a)	$\operatorname{Gd} I$
$\mathbf{B_3}$	=	$rac{1}{3}{f a}_1 + rac{2}{3}{f a}_2 + rac{1}{4}{f a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + \frac{1}{4}c\hat{\mathbf{z}}$	(2c)	ВІ
${f B_4}$	=	$\frac{2}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2 + \frac{3}{4}\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + \frac{3}{4}c\hat{\mathbf{z}}$	(2c)	ВІ
${f B_5}$	=	$x_3 \mathbf{a}_1 + 2x_3 \mathbf{a}_2 + \frac{1}{4} \mathbf{a}_3$	=	$\frac{3}{2}ax_3\hat{\mathbf{x}} + \frac{\sqrt{3}}{2}ax_3\hat{\mathbf{y}} + \frac{1}{4}c\hat{\mathbf{z}}$	(6h)	ΟI
${f B_6}$	=	$-2x_3\mathbf{a}_1 - x_3\mathbf{a}_2 + \frac{1}{4}\mathbf{a}_3$	=	$-\frac{3}{2}ax_3\hat{\mathbf{x}} + \frac{\sqrt{3}}{2}ax_3\hat{\mathbf{y}} + \frac{1}{4}c\hat{\mathbf{z}}$	(6h)	ΟI
$\mathbf{B_7}$	=	$x_3 \mathbf{a}_1 - x_3 \mathbf{a}_2 + \frac{1}{4} \mathbf{a}_3$	=	$-\sqrt{3}ax_3\hat{\mathbf{y}}+\frac{1}{4}c\hat{\mathbf{z}}$	(6h)	ΟI
$\mathbf{B_8}$	=	$-x_3\mathbf{a}_1 - 2x_3\mathbf{a}_2 + \frac{3}{4}\mathbf{a}_3$	=	$-\frac{3}{2}ax_3\hat{\mathbf{x}} - \frac{\sqrt{3}}{2}ax_3\hat{\mathbf{y}} + \frac{3}{4}c\hat{\mathbf{z}}$	(6h)	ΟI
$\mathbf{B_9}$	=	$2x_3\mathbf{a}_1 + x_3\mathbf{a}_2 + \frac{3}{4}\mathbf{a}_3$	=	$\frac{3}{2}ax_3\hat{\mathbf{x}} - \frac{\sqrt{3}}{2}ax_3\hat{\mathbf{y}} + \frac{3}{4}c\hat{\mathbf{z}}$	(6h)	ΟI
${\bf B_{10}}$	=	$-x_3\mathbf{a}_1 + x_3\mathbf{a}_2 + \frac{3}{4}\mathbf{a}_3$	=	$\sqrt{3}ax_3\hat{\mathbf{y}} + \frac{3}{4}c\hat{\mathbf{z}}$	(6h)	ΟI

References

[1] M. Ren, J. H. Lin, Y. Dong, L. Q. Yang, M. Z. Su, and L. P. You, Structure and Phase Transition of GdBO₃, Chem. Mater. 11, 1576–1580 (1999), doi:10.1021/cm9900220.