High Temperature GdBO_{3} Structure:
 ABC3_hP10_194_c_a_h-002

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. In preparation.

- (Ren, 1999) found two structures for GdBO_{3} : a low-temperature rhombohedral structure, and this high-temperature hexagonal structure.
- There is large thermal hysteresis in this system, with the LT \rightarrow HT transition taking place at 1109 K and the HT \rightarrow LT transition at 819 K .
- (Ren, 1999) list YBO_{3} as the prototype for this phase, but although related it differs from both our ordered and disordered YBO_{3} structures.
- This structure has the same AFLOW label, ABC3_hP10_194_c_a_h, as the BaNiO_{3} structure, but the c / a ration of GdBO_{3} is more than twice that of BaNiO_{3}, so we treat them as different structures. The structures are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.

Hexagonal primitive vectors

$$
\begin{aligned}
& \mathbf{a}_{\mathbf{1}}=\frac{1}{2} a \hat{\mathbf{x}}-\frac{\sqrt{3}}{2} a \hat{\mathbf{y}} \\
& \mathbf{a}_{\mathbf{2}}=\frac{1}{2} a \hat{\mathbf{x}}+\frac{\sqrt{3}}{2} a \hat{\mathbf{y}} \\
& \mathbf{a}_{\mathbf{3}}= \\
& c \hat{\mathbf{z}}
\end{aligned}
$$

Basis vectors

Lattice coordinates

$\mathbf{B}_{1}=$
0
$\mathbf{B}_{2}=$
$\frac{1}{2} \mathbf{a}_{3}$
$\frac{1}{3} \mathbf{a}_{1}+\frac{2}{3} \mathbf{a}_{2}+\frac{1}{4} \mathbf{a}_{3}$
$\frac{2}{3} \mathbf{a}_{1}+\frac{1}{3} \mathbf{a}_{2}+\frac{3}{4} \mathbf{a}_{3}$
$x_{3} \mathbf{a}_{1}+2 x_{3} \mathbf{a}_{2}+\frac{1}{4} \mathbf{a}_{3}$
$-2 x_{3} \mathbf{a}_{1}-x_{3} \mathbf{a}_{2}+\frac{1}{4} \mathbf{a}_{3}$
$=\quad-\frac{3}{2} a x_{3} \hat{\mathbf{x}}+\frac{\sqrt{3}}{2} a x_{3} \hat{\mathbf{y}}+\frac{1}{4} c \hat{\mathbf{z}}$
$=\quad-\sqrt{3} a x_{3} \hat{\mathbf{y}}+\frac{1}{4} c \hat{\mathbf{z}}$
$-\frac{3}{2} a x_{3} \hat{\mathbf{x}}-\frac{\sqrt{3}}{2} a x_{3} \hat{\mathbf{y}}+\frac{3}{4} c \hat{\mathbf{z}}$
$=\quad \frac{3}{2} a x_{3} \hat{\mathbf{x}}-\frac{\sqrt{3}}{2} a x_{3} \hat{\mathbf{y}}+\frac{3}{4} c \hat{\mathbf{z}}$
$=\quad \sqrt{3} a x_{3} \hat{\mathbf{y}}+\frac{3}{4} c \hat{\mathbf{z}}$
Wyckoff Atom
position type

B I
O I
(6h) O I

References

[1] M. Ren, J. H. Lin, Y. Dong, L. Q. Yang, M. Z. Su, and L. P. You, Structure and Phase Transition of GdBO ${ }_{3}$, Chem. Mater. 11, 1576-1580 (1999), doi $10.1021 / \mathrm{cm} 9900220$.

