$F5_4$ (NH₄ClO₂) (*Obsolete*) Structure: ABC2_tP8_100_b_a_c-001

This structure originally had the label ABC2_tP8_100_b_a_c. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 3*, Comput. Mater. Sci. **199**, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

https://aflow.org/p/YZB2

 $https://aflow.org/p/ABC2_tP8_100_b_a_c-001$

Prototype $Cl(NH_4)O_2$

AFLOW prototype label ABC2_tP8_100_b_a_c-001

Strukturbericht designation $F5_4$

ICSD 36179

Pearson symbol tP8

Space group number 100

Space group symbol P4bm

AFLOW prototype command aflow --proto=ABC2_tP8_100_b_a_c-001

--params= $a, c/a, z_1, z_2, x_3, z_3$

- (Levi, 1931) first determined this structure, but they were actually looking at a combination of ammonium chlorite, NH_4ClO_2 and ammonium chlorate, NH_4ClO_3 , which takes on the γ -KNO₃ structure. In addition, they were unable to determine the positions of the hydrogen atoms, and it appears that space group P4bm #100 is incompatible with having four hydrogen atoms in a tetrahedral arrangement about the nitrogen atom. (Smolentsev, 2005) determined the positions of the hydrogen atoms, and placed this structure in space group $P\overline{42}_1m \#113$, making the structure of (Levi, 1931) obsolete. We present it here for historical interest.
- Since the position of the hydrogen atoms in the NH₄ ions were not determined, we only provide the nitrogen atom positions (labeled as NH₄).

Simple Tetragonal primitive vectors

$$\mathbf{a_1} = a\,\hat{\mathbf{x}}$$

$$\mathbf{a_2} = a\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c \hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$z_1\mathbf{a}_3$	=	$cz_1\mathbf{\hat{z}}$	(2a)	NH I
${f B_2}$	=	$\frac{1}{2}\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 + z_1\mathbf{a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{1}{2}a\mathbf{\hat{y}} + cz_1\mathbf{\hat{z}}$	(2a)	NH I
$\mathbf{B_3}$	=	$rac{1}{2}{f a}_1 + z_2{f a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}}+cz_2\mathbf{\hat{z}}$	(2b)	Cl I
$\mathbf{B_4}$	=	$rac{1}{2}{f a}_2 + z_2{f a}_3$	=	$rac{1}{2}a\hat{\mathbf{y}}+cz_2\hat{\mathbf{z}}$	(2b)	Cl I
${f B_5}$	=	$x_3 \mathbf{a}_1 + \left(x_3 + \frac{1}{2}\right) \mathbf{a}_2 + z_3 \mathbf{a}_3$	=	$ax_3 \hat{\mathbf{x}} + a \left(x_3 + \frac{1}{2}\right) \hat{\mathbf{y}} + cz_3 \hat{\mathbf{z}}$	(4c)	ΟI
$\mathbf{B_6}$	=	$-x_3\mathbf{a}_1 - \left(x_3 - \frac{1}{2}\right)\mathbf{a}_2 + z_3\mathbf{a}_3$	=	$-ax_3\mathbf{\hat{x}}-a\left(x_3-\frac{1}{2}\right)\mathbf{\hat{y}}+cz_3\mathbf{\hat{z}}$	(4c)	ΟI
$\mathbf{B_7}$	=	$-\left(x_3-\frac{1}{2}\right){\bf a}_1+x_3{\bf a}_2+z_3{\bf a}_3$	=	$-a\left(x_3-\frac{1}{2}\right)\mathbf{\hat{x}}+ax_3\mathbf{\hat{y}}+cz_3\mathbf{\hat{z}}$	(4c)	ΟI
$\mathbf{B_8}$	=	$\left(x_3 + \frac{1}{2}\right) \mathbf{a}_1 - x_3 \mathbf{a}_2 + z_3 \mathbf{a}_3$	=	$a\left(x_3+\frac{1}{2}\right)\hat{\mathbf{x}}-ax_3\hat{\mathbf{y}}+cz_3\hat{\mathbf{z}}$	(4c)	ΟI

References

- [1] G. R. Levi and A. Scherillo, Ricerche cristallografiche sui sali dell'acido cloroso, Z. Kristallogr. 76, 431–452 (1931), doi:10.1524/zkri.1931.76.1.431.
- [2] A. I. Smolentsev and D. Y. Naumov, Ammonium chlorite, NH_4 ClO_2 , at 150 K, Acta Crystallogr. Sect. E **61**, i38–i40 (2005), doi:10.1107/S1600536805005088.

Found in

[1] C. Hermann, O. Lohrmann, and H. Philipp, eds., *Strukturbericht Band II 1928-1932* (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).