γ -LiFeO₂ Structure: ABC2_tI16_141_a_b_e-003

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. In preparation.

https://aflow.org/p/XJE5

https://aflow.org/p/ABC2_tI16_141_a_b_e-003

Other compounds with this structure ErLiO₂, δ-LiAlO₂, NaGdO₂, NdNaO₂, InLiO₂

ICSD

- FeLiO₂ exhibits a wide variety of structures, with the exact structure present depends on thermodynamic effects, preparation methods, and charge/discharge history.
- We follow the nomenclature of (Kanno, 1996), where appropriate, with modifications found in (Tabuchi, 1995) and (Abdel-Ghany, 2012). The following list of structures is no doubt incomplete:
 - $-\alpha$ -LiFeO₂ is in the cubic rock salt (B1) structure, with lithium and iron randomly placed on the sodium site and oxygen on the chlorine site. It is synthesized at temperatures above 600°C.
 - $-\beta$ -LiFeO₂ is a tetragonal distortion of α -LiFeO₂ with the lithium and iron atoms still randomly placed on their sublattice (we denote this site as Fe).
 - $-\beta'$ -LiFeO₂ is monoclinic and transforms to γ -LiFeO₂ near room temperature. This is likely the phase (Kanno, 1996) refers to as β -LiFeO₂.

- $-\gamma$ -LiFeO₂ (this structure) is created by low-temperature synthesis below 500°C and can be considered as an ordered version of α -LiFeO₂, with a doubled unit cell.
- o-LiFeO₂ is orthorhombic, produced by an ion exchange interaction. It is (meta)-stable below 400°C, transforming to α -LiFeO₂ above 600°C.
- For γ -FeLiO₂ we use the data taken by (Barré, 2009) at 25°.

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$rac{7}{8}{f a}_1+rac{1}{8}{f a}_2+rac{3}{4}{f a}_3$	=	$rac{3}{4}a\mathbf{\hat{y}}+rac{1}{8}c\mathbf{\hat{z}}$	(4a)	Fe I
$\mathbf{B_2}$	=	$rac{1}{8}{f a}_1+rac{7}{8}{f a}_2+rac{1}{4}{f a}_3$	=	$rac{1}{2}a\mathbf{\hat{x}} - rac{1}{4}a\mathbf{\hat{y}} + rac{3}{8}c\mathbf{\hat{z}}$	(4a)	Fe I
$\mathbf{B_3}$	=	$rac{5}{8}{f a}_1+rac{3}{8}{f a}_2+rac{1}{4}{f a}_3$	=	$rac{1}{4}a\mathbf{\hat{y}}+rac{3}{8}c\mathbf{\hat{z}}$	(4b)	Li I
$\mathbf{B_4}$	=	$rac{3}{8}{f a}_1+rac{5}{8}{f a}_2+rac{3}{4}{f a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{1}{4}a\mathbf{\hat{y}} + \frac{1}{8}c\mathbf{\hat{z}}$	(4b)	Li I
\mathbf{B}_{5}	=	$\left(z_3 + \frac{1}{4} ight) \mathbf{a}_1 + z_3 \mathbf{a}_2 + \frac{1}{4} \mathbf{a}_3$	=	$rac{1}{4}a\mathbf{\hat{y}}+cz_{3}\mathbf{\hat{z}}$	(8e)	ΟΙ
$\mathbf{B_6}$	=	$z_3 \mathbf{a}_1 + \left(z_3 + rac{1}{4} ight) \mathbf{a}_2 + rac{3}{4} \mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{1}{4}a\hat{\mathbf{y}} + c\left(z_3 - \frac{1}{4}\right)\hat{\mathbf{z}}$	(8e)	ΟΙ
$\mathbf{B_{7}}$	=	$-\left(z_3-rac{3}{4} ight){f a}_1-z_3{f a}_2+rac{3}{4}{f a}_3$	=	$rac{3}{4}a\mathbf{\hat{y}}-cz_{3}\mathbf{\hat{z}}$	(8e)	ΟΙ
$\mathbf{B_8}$	=	$-z_3{f a}_1-\left(z_3-rac{3}{4} ight){f a}_2+rac{1}{4}{f a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} - \frac{1}{4}a\mathbf{\hat{y}} - c\left(z_3 - \frac{1}{4}\right)\mathbf{\hat{z}}$	(8e)	ΟΙ

References

- [1] M. Barré and M. Catti, Neutron diffraction study of the β ' and γ phases of LiFeO₂, J. Solid State Chem. **182**, 2549–2554 (2009), doi:10.1016/j.jssc.2009.06.029.
- [2] R. Kanno, T. Shirane, Y. Kawamoto, Y. Takeda, M. Takano, M. Ohashi, and Y. Yamaguchi, Synthesis, Structure, and Electrochemical Properties of a New Lithium Iron Oxide, LiFeO₂, with a Corrugated Layer Structure, J. Electrochem. Soc. 143, 2435–2442 (1996), doi:10.1149/1.1837027.
- [3] M. Tabuchi, K. Ado, H. Sakaebe, C. Masquelier, H. Kageyama, and O. Nakamura, Preparation of AFeO₂ (A = Li, Na) by hydrothermal method, Solid State Ionics 79, 220–226 (1995), doi:10.1016/0167-2738(95)00065-E.
- [4] A. E. Abdel-Ghany, A. Mauger, H. Groult, K. Zaghib, and C. M. Julien, Structural properties and electrochemistry of α-LiFeO₂, J. Power Sources 197, 285–291 (2012), doi:10.1016/j.jpowsour.2011.09.054.