
Ferroelectric NaNO₂ $(F5_5)$ Structure: ABC2_oI8_44_a_a_c-001

This structure originally had the label ABC2_oI8_44_a_a_c. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 3*, Comput. Mater. Sci. **199**, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

https://aflow.org/p/JZVB

 $https://aflow.org/p/ABC2_oI8_44_a_a_c-001$

Prototype $NaNO_2$

AFLOW prototype label ABC2_oI8_44_a_a_c-001

Strukturbericht designation $F5_5$

Mineral name sodium nitrite

ICSD 15400
Pearson symbol oI8
Space group number 44

Space group symbol Imm2

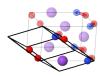
AFLOW prototype command aflow --proto=ABC2_oI8_44_a_a_c-001 --params= $a, b/a, c/a, z_1, z_2, x_3, z_3$

Other compounds with this structure

 $AgNO_3$ $(F5_{12})$

- This is the low-temperature phase of NaNO₂, ferroelectric below 158°C.
- (Kay, 1961) gives the structure in the Im2m setting of space group #44. We have used FINDSYM to put it in the standard Imm2 setting.

- This structure is very similar to silver nitrite, AgNO₂, F5₁₂. We present both structures as they are listed separately in the *Strukturbericht* volumes.
- The original publications give Wyckoff positions giving NaNO₂ the AFLOW prototype label ABC2_oI8_44_a_a_c and AgNO₂ the label ABC2_oI8_44_a_a_d. When we apply our AFLOW prototype label rules, however, the label for both structures becomes ABC2_oI8_44_a_a_c. The two structures are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.
- The origin of the z coordinate in Imm2, or the y coordinate in Im2m, is arbitrary. Here z_3 is set to zero.


Body-centered Orthorhombic primitive vectors

$$\mathbf{a_1} = -\frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}b\,\hat{\mathbf{y}} + \frac{1}{2}c\,\hat{\mathbf{z}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{1}{2}b\,\hat{\mathbf{y}} + \frac{1}{2}c\,\hat{\mathbf{z}}$$

$$\mathbf{a_3} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}b\,\hat{\mathbf{y}} - \frac{1}{2}c\,\hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$z_1\mathbf{a}_1 + z_1\mathbf{a}_2$	=	$cz_1\mathbf{\hat{z}}$	(2a)	ΝΙ
$\mathbf{B_2}$	=	$z_2\mathbf{a}_1+z_2\mathbf{a}_2$	=	$cz_2\mathbf{\hat{z}}$	(2a)	Na I
$\mathbf{B_3}$	=	$z_3 \mathbf{a}_1 + (x_3 + z_3) \mathbf{a}_2 + x_3 \mathbf{a}_3$	=	$ax_3\mathbf{\hat{x}} + cz_3\mathbf{\hat{z}}$	(4c)	ΟI
$\mathbf{B_4}$	=	$z_3 \mathbf{a}_1 - (x_3 - z_3) \mathbf{a}_2 - x_3 \mathbf{a}_3$	=	$-ax_3\mathbf{\hat{x}}+cz_3\mathbf{\hat{z}}$	(4c)	ΟI

References

[1] M. I. Kay and B. C. Frazier, A neutron diffraction refinement of the low temperature phase of NaNO₂, Acta Cryst. 14, 56–57 (1961), doi:10.1107/S0365110X61000103.