KNO₂ III Structure: ABC2_mP16_14_e_e_2e-003

Prototype

This structure originally had the label $ABC2_mP16_14_e_e_2$. KNO2. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 3*, Comput. Mater. Sci. **199**, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

https://aflow.org/p/JSKP

https://aflow.org/p/ABC2_mP16_14_e_e_2e-003

rototype	
AFLOW prototype label	ABC2_mP16_14_e_e_2e-003
Mineral name	Potassium Nitrite
ICSD	86117
Pearson symbol	mP16
Space group number	14
Space group symbol	$P2_1/c$
AFLOW prototype command	aflowproto=ABC2_mP16_14_e_e_2e-003 params= $a, b/a, c/a, \beta, x_1, y_1, z_1, x_2, y_2, z_2, x_3, y_3, z_3, x_4, y_4, z_4$

- This is not the KNO₂ structure found by (Ziegler, 1936) and given the *Strukturbericht* designation $F5_{11}$. That structure is now considered obsolete.
- We use the data take by (Onada, 1998) at 4K. Phase III is stable up to 264K. Above this temperature it transforms to the rhombohedral phase II, which has disordered NO_2^- ions
- KNO₂ has the same AFLOW label as manganite (E0₆), ABC2_mP16_14_e_e_2e. The structures are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.

Simple Monoclinic primitive vectors

 $\mathbf{a_1}$ =

 $a_2 =$

 \mathbf{a}_3

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$x_1 \mathbf{a}_1 + y_1 \mathbf{a}_2 + z_1 \mathbf{a}_3$	=	$(ax_1 + cz_1\cos\beta) \mathbf{\hat{x}} + by_1 \mathbf{\hat{y}} + cz_1\sin\beta \mathbf{\hat{z}}$	(4e)	ΚI
B_2	=	$-x_1 {f a}_1 + \left(y_1 + {1\over 2} ight) {f a}_2 - \left(z_1 - {1\over 2} ight) {f a}_3$	=	$-\left(ax_{1}+c\left(z_{1}-\frac{1}{2}\right)\cos\beta\right)\mathbf{\hat{x}}+\\b\left(y_{1}+\frac{1}{2}\right)\mathbf{\hat{y}}-c\left(z_{1}-\frac{1}{2}\right)\sin\beta\mathbf{\hat{z}}$	(4e)	ΚI
$\mathbf{B_3}$	=	$-x_1 \mathbf{a}_1 - y_1 \mathbf{a}_2 - z_1 \mathbf{a}_3$	=	$-(ax_1+cz_1\cos\beta)\mathbf{\hat{x}}-by_1\mathbf{\hat{y}}-cz_1\sin\beta\mathbf{\hat{z}}$	(4e)	ΚI
B_4	=	$x_1 \mathbf{a}_1 - (y_1 - \frac{1}{2}) \mathbf{a}_2 + (z_1 + \frac{1}{2}) \mathbf{a}_3$	=	$ \begin{pmatrix} ax_1 + c\left(z_1 + \frac{1}{2}\right)\cos\beta \end{pmatrix} \hat{\mathbf{x}} - \\ b\left(y_1 - \frac{1}{2}\right) \hat{\mathbf{y}} + c\left(z_1 + \frac{1}{2}\right)\sin\beta \hat{\mathbf{z}} $	(4e)	ΚI
$\mathbf{B_5}$	=	$x_2 \mathbf{a}_1 + y_2 \mathbf{a}_2 + z_2 \mathbf{a}_3$	=	$(ax_2 + cz_2\cos\beta) \mathbf{\hat{x}} + by_2 \mathbf{\hat{y}} + cz_2\sin\beta \mathbf{\hat{z}}$	(4e)	ΝI
B_6	=	$-x_2 {f a}_1 + ig(y_2 + {1\over 2}ig) {f a}_2 - ig(z_2 - {1\over 2}ig) {f a}_3$	=	$-\left(ax_{2}+c\left(z_{2}-\frac{1}{2}\right)\cos\beta\right)\mathbf{\hat{x}}+\\b\left(y_{2}+\frac{1}{2}\right)\mathbf{\hat{y}}-c\left(z_{2}-\frac{1}{2}\right)\sin\beta\mathbf{\hat{z}}$	(4e)	N I
$\mathbf{B_7}$	=	$-x_2 \mathbf{a}_1 - y_2 \mathbf{a}_2 - z_2 \mathbf{a}_3$	=	$-(ax_2+cz_2\cos\beta)\mathbf{\hat{x}}-by_2\mathbf{\hat{y}}-cz_2\sin\beta\mathbf{\hat{z}}$	(4e)	ΝΙ
B ₈	=	$x_2 \mathbf{a}_1 - \left(y_2 - \frac{1}{2}\right) \mathbf{a}_2 + \left(z_2 + \frac{1}{2}\right) \mathbf{a}_3$	=	$ \begin{pmatrix} ax_2 + c\left(z_2 + \frac{1}{2}\right)\cos\beta \end{pmatrix} \hat{\mathbf{x}} - \\ b\left(y_2 - \frac{1}{2}\right) \hat{\mathbf{y}} + c\left(z_2 + \frac{1}{2}\right)\sin\beta \hat{\mathbf{z}} $	(4e)	N I
\mathbf{B}_{9}	=	$x_3 \mathbf{a}_1 + y_3 \mathbf{a}_2 + z_3 \mathbf{a}_3$	=	$(ax_3 + cz_3\cos\beta) \mathbf{\hat{x}} + by_3 \mathbf{\hat{y}} + cz_3\sin\beta \mathbf{\hat{z}}$	(4e)	ΟΙ
B ₁₀	=	$-x_3 {f a}_1 + ig(y_3 + {1\over 2}ig) {f a}_2 - ig(z_3 - {1\over 2}ig) {f a}_3$	=	$-\left(ax_3+c\left(z_3-\frac{1}{2}\right)\cos\beta\right)\mathbf{\hat{x}}+\\b\left(y_3+\frac{1}{2}\right)\mathbf{\hat{y}}-c\left(z_3-\frac{1}{2}\right)\sin\beta\mathbf{\hat{z}}$	(4e)	ΟΙ
B_{11}	=	$-x_3 \mathbf{a}_1 - y_3 \mathbf{a}_2 - z_3 \mathbf{a}_3$	=	$-(ax_3+cz_3\cos\beta)\mathbf{\hat{x}}-by_3\mathbf{\hat{y}}-cz_3\sin\beta\mathbf{\hat{z}}$	(4e)	ΟΙ
B ₁₂	=	$x_3 \mathbf{a}_1 - \left(y_3 - \frac{1}{2}\right) \mathbf{a}_2 + \left(z_3 + \frac{1}{2}\right) \mathbf{a}_3$	=	$ \begin{pmatrix} ax_3 + c\left(z_3 + \frac{1}{2}\right)\cos\beta \end{pmatrix} \hat{\mathbf{x}} - \\ b\left(y_3 - \frac{1}{2}\right) \hat{\mathbf{y}} + c\left(z_3 + \frac{1}{2}\right)\sin\beta \hat{\mathbf{z}} $	(4e)	ΟΙ
B_{13}	=	$x_4 \mathbf{a}_1 + y_4 \mathbf{a}_2 + z_4 \mathbf{a}_3$	=	$(ax_4 + cz_4\cos\beta) \mathbf{\hat{x}} + by_4 \mathbf{\hat{y}} + cz_4\sin\beta \mathbf{\hat{z}}$	(4e)	O II
B ₁₄	=	$-x_4 {f a}_1 + \left(y_4 + {1\over 2} ight) {f a}_2 - \left(z_4 - {1\over 2} ight) {f a}_3$	=	$-\left(ax_4+c\left(z_4-\frac{1}{2}\right)\cos\beta\right)\mathbf{\hat{x}}+\\b\left(y_4+\frac{1}{2}\right)\mathbf{\hat{y}}-c\left(z_4-\frac{1}{2}\right)\sin\beta\mathbf{\hat{z}}$	(4e)	O II
B_{15}	=	$-x_4 \mathbf{a}_1 - y_4 \mathbf{a}_2 - z_4 \mathbf{a}_3$	=	$-(ax_4+cz_4\cos\beta)\mathbf{\hat{x}}-by_4\mathbf{\hat{y}}-cz_4\sin\beta\mathbf{\hat{z}}$	(4e)	O II
B ₁₆	=	$x_4 \mathbf{a}_1 - \left(y_4 - \frac{1}{2}\right) \mathbf{a}_2 + \left(z_4 + \frac{1}{2}\right) \mathbf{a}_3$	=	$ (ax_4 + c (z_4 + \frac{1}{2}) \cos \beta) \mathbf{\hat{x}} - b (y_4 - \frac{1}{2}) \mathbf{\hat{y}} + c (z_4 + \frac{1}{2}) \sin \beta \mathbf{\hat{z}} $	(4e)	O II

References

- N. Onoda-Yamamuro, H. Honda, R. Ikeda, O. Yamamuro, T. Matsuo, K. Oikawa, T. Kamiyama, and F. Izumi, Neutron powder diffraction study of the low-temperature phases of KNO₂, J. Phys.: Condens. Matter 10, 3341–3351 (1998), doi:10.1088/0953-8984/10/15/01.
- [2] G. E. Ziegler, The Crystal Structure of Potassium Nitrite, KNO₂, Z. Kristallogr. 34, 491–499 (1936), doi:10.1524/zkri.1936.94.1.500.

Found in

 C. Duan, W. N. Mei, R. W. Smith, M. M. O. J. Liu, and J. R. Hardy, Order-disorder phase transitions in KNO₂, CsNO₂, and TlNO₂ crystals: A molecular dynamics study, Phys. Rev. B 63, 144105 (2001), doi:10.1103/PhysRevB.63.144105.