## $F 5_{11}\left(\mathrm{KNO}_{2}\right)$ Structure (Obsolete): ABC2_mC8_8_a_a_b-001

This structure originally had the label ABC2_mC8_8_a_a_b. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comput. Mater. Sci. 199, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

| Prototype | $\mathrm{KNO}_{2}$ |
| :--- | :--- |
| AFLOW prototype label | $\mathrm{ABC} 2 \_$_mC8_8_a_a_b-001 |
| Strukturbericht designation | $F 5_{11}$ |
| ICSD | 26764 |
| Pearson symbol | mC 8 |
| Space group number | 8 |
| Space group symbol | $C m$ |

AFLOW prototype command

$$
\begin{aligned}
\text { aflow } & - \text { proto }=A B C 2 \_m C 8 \_8 \_a \_a \_b-001 \\
& - \text { params }=a, b / a, c / a, \beta, x_{1}, z_{1}, x_{2}, z_{2}, x_{3}, y_{3}, z_{3}
\end{aligned}
$$

- "The room-temperature structure of $\mathrm{KNO}_{2}$ was first considered to have monoclinic symmetry, ..., but recent studies have established the structure to be rhombohedral ..." (Rao, 1975). The $F 5_{11}$ structure is thus neither the ground state structure of $\mathrm{KNO}_{2}$ nor the room-temperature structure, which is somewhat disordered with space group $R \overline{3} m \# 166$. We present this structure as part of the historical record.
- (Ziegler, 1936) gave this structure in the $A m$ setting of space group \#8. We used FINDSYM to transform it to the standard $C m$ setting, which involved a considerable change in the orientation and length of the primitive lattice vectors.


## Base-centered Monoclinic primitive vectors

$\underbrace{a 3}_{a 1}$

$$
\begin{aligned}
& \mathbf{a}_{\mathbf{1}}=\frac{1}{2} a \hat{\mathbf{x}}-\frac{1}{2} b \hat{\mathbf{y}} \\
& \mathbf{a}_{\mathbf{2}}= \\
& \mathbf{a}_{\mathbf{3}}=
\end{aligned} \frac{1}{2} a \hat{\mathbf{x}}+\frac{1}{2} b \hat{\mathbf{y}}, ~(\cos \beta \hat{\mathbf{x}}+c \sin \beta \hat{\mathbf{z}} .
$$



## Basis vectors

|  |  | Lattice coordinates |  | Cartesian coordinates | Wyckoff position | Atom type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{B}_{1}$ | $=$ | $x_{1} \mathbf{a}_{1}+x_{1} \mathbf{a}_{2}+z_{1} \mathbf{a}_{3}$ | $=$ | $\left(a x_{1}+c z_{1} \cos \beta\right) \hat{\mathbf{x}}+c z_{1} \sin \beta \hat{\mathbf{z}}$ | (2a) | K I |
| $\mathrm{B}_{2}$ | $=$ | $x_{2} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+z_{2} \mathbf{a}_{3}$ | $=$ | $\left(a x_{2}+c z_{2} \cos \beta\right) \hat{\mathbf{x}}+c z_{2} \sin \beta \hat{\mathbf{z}}$ | (2a) | N I |
| $\mathrm{B}_{3}$ |  | $\begin{gathered} \left(x_{3}-y_{3}\right) \mathbf{a}_{1}+\left(x_{3}+y_{3}\right) \mathbf{a}_{2}+ \\ z_{3} \mathbf{a}_{3} \end{gathered}$ | = | $\left(a x_{3}+c z_{3} \cos \beta\right) \hat{\mathbf{x}}+b y_{3} \hat{\mathbf{y}}+c z_{3} \sin \beta \hat{\mathbf{z}}$ | (4b) | O I |
| $\mathrm{B}_{4}$ | $=$ | $\begin{gathered} \left(x_{3}+y_{3}\right) \mathbf{a}_{1}+\left(x_{3}-y_{3}\right) \mathbf{a}_{2}+ \\ z_{3} \mathbf{a}_{3} \end{gathered}$ | $=$ | $\left(a x_{3}+c z_{3} \cos \beta\right) \hat{\mathbf{x}}-b y_{3} \hat{\mathbf{y}}+c z_{3} \sin \beta \hat{\mathbf{z}}$ | (4b) | O I |

## References

[1] G. E. Ziegler, The Crystal Structure of Potassium Nitrite, KNO ${ }_{2}$, Z. Kristallogr. A 94, 491-499 (1936), doi $10.1524 /$ zkri.1936.94.1.491.
[2] C. N. R. Rao, B. Prakash, and M. Natarajan, Crystal Structure Transformations in Inorganic Nitrities, Nitrates, and Carbonates (National Bureau of Standards, 1975). National Standard Reference Data Series, NSRDS-NBS 53.

