α -NaFeO₂ Structure:

ABC2_hR4_166_a_b_c-009

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 4*. In preparation.

https://aflow.org/p/5FG5

 $https://aflow.org/p/ABC2_hR4_166_a_b_c-009$

Prototype $FeNaO_2$

AFLOW prototype label ABC2_hR4_166_a_b_c-009

ICSD187705Pearson symbolhR4Space group number166Space group symbol $R\overline{3}m$

AFLOW prototype command aflow --proto=ABC2_hR4_166_a_b_c-009

--params= $a, c/a, x_3$

Other compounds with this structure

$$\label{eq:combse} \begin{split} & \text{CeRbO}_2, \, \text{CeRbSe}_2, \, \text{CeRbSe}_2, \, \text{CeRbTe}_2, \, \text{CeRbTeSe}_2, \, \text{CsYbSe}_2, \, \text{KCeS}_2, \, \text{LiCoO}_2, \, \text{LiNi}_2, \, \text{NaCoO}_2, \, \text{NaYbO}_2, \, \text{NaYbSe}_2, \, \text{N$$

- This is also referred to as O3-NaFeO₂.
- This structure is related to O2-LiCoO₂, O4-LiCoO₂, and OP4-LiNaCo₂O₄.
- α -NaFeO₂ has the same AFLOW Label, ABC2_hR4_166_a_b_c, as rhombohedral delafossite, CuFeO₂ and caswellsilverite ($F5_1$). The difference in the internal parameter z_3 causes a large change in the bonding of the crystals, so we present them as different structures.
- The structures are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.

• Hexagonal settings of this structure can be obtained with the option --hex.

${\bf Rhombohedral\ primitive\ vectors}$

$$\mathbf{a_1} = \frac{1}{2}a\,\mathbf{\hat{x}} - \frac{\sqrt{3}}{6}a\,\mathbf{\hat{y}} + \frac{1}{3}c\,\mathbf{\hat{z}}$$

$$\mathbf{a_2} = \frac{1}{\sqrt{3}}a\,\hat{\mathbf{y}} + \frac{1}{3}c\,\hat{\mathbf{z}}$$

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\,\hat{\mathbf{y}} + \frac{1}{3}c\,\hat{\mathbf{z}}$$

$$\mathbf{a_2} = \frac{1}{\sqrt{3}}a\,\hat{\mathbf{y}} + \frac{1}{3}c\,\hat{\mathbf{z}}$$

$$\mathbf{a_3} = -\frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\,\hat{\mathbf{y}} + \frac{1}{3}c\,\hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	0	=	0	(1a)	Fe I
${f B_2}$	=	$rac{1}{2}{f a}_1 + rac{1}{2}{f a}_2 + rac{1}{2}{f a}_3$	=	$rac{1}{2}c\mathbf{\hat{z}}$	(1b)	Na I
${f B_3}$	=	$x_3 \mathbf{a}_1 + x_3 \mathbf{a}_2 + x_3 \mathbf{a}_3$	=	$cx_3\mathbf{\hat{z}}$	(2c)	ΟI
${f B_4}$	=	$-x_3 \mathbf{a}_1 - x_3 \mathbf{a}_2 - x_3 \mathbf{a}_3$	=	$-cx_3\mathbf{\hat{z}}$	(2c)	ΟI

References

[1] N. Yabuuchi, H. Yoshida, and S. Komaba, Crystal Structures and Electrode Performance of Alpha-NaFeO₂ for Rechargeable Sodium Batteries, Electrochemistry 80, 716–719 (2012), doi:10.5796/electrochemistry.80.716.