O2-LiCoO₂ Structure:

ABC2_hP8_186_b_b_ab-001

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 4*. In preparation.

https://aflow.org/p/5BYD

 $https://aflow.org/p/ABC2_hP8_186_b_b_ab-001$

Prototype $CoLiO_2$

AFLOW prototype label ABC2_hP8_186_b_b_ab-001

ICSDnonePearson symbolhP8Space group number186Space group symbol $P6_3mc$

AFLOW prototype command aflow --proto=ABC2_hP8_186_b_b_ab-001

--params= $a, c/a, z_1, z_2, z_3, z_4$

- LiCoO₂ structures are defined by the stacking arrangement of the edge-shared CoO_6 octahedra. In addition, the O3 and O4 structures may have stacking faults. (Yabuuchi, 2013) prepared all of these structures by treating "OP4"-LiNaCo₂O₄ using ion-exchange in aqueous media.
 - In O2-LiCoO₂ (this structure) the octahedra are stacked in an alternating cubic/hexagonal arrangement.
 - In O3-LiCoO₃ the octahedra are stacked in a cubic arrangement, taking on the α -NaFeO₂ structure.
 - In O4-LiCoO $_2$ the octahedra alternate between O2 and O4.
- (Delmas, 1982) give the composition of this sample as Li_{0.93}CoO_{1.96}. They state that the system is in space group P3m1 #156, but the coordinates they give imply that all of the lithium and cobalt atoms are in equivalent positions, and the space group becomes $P6_3mc$ #186.

• Space group $P6_3mc \#186$ does not specify the origin of the z-coordinate. We fix it here by setting $z_2 = 0$.

Hexagonal primitive vectors

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c\,\hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$z_1{f a}_3$	=	$cz_1\mathbf{\hat{z}}$	(2a)	ΟI
$\mathbf{B_2}$	=	$(z_1 + \frac{1}{2}) \mathbf{a}_3$	=	$c\left(z_1+rac{1}{2} ight)\mathbf{\hat{z}}$	(2a)	ΟI
$\mathbf{B_3}$	=	$\frac{1}{3}\mathbf{a}_1 + \frac{2}{3}\mathbf{a}_2 + z_2\mathbf{a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{\sqrt{3}}{6}a\mathbf{\hat{y}} + cz_2\mathbf{\hat{z}}$	(2b)	Co I
$\mathbf{B_4}$	=	$\frac{2}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2 + \left(z_2 + \frac{1}{2}\right)\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + c\left(z_2 + \frac{1}{2}\right)\hat{\mathbf{z}}$	(2b)	Co I
${f B_5}$	=	$\frac{1}{3}\mathbf{a}_1 + \frac{2}{3}\mathbf{a}_2 + z_3\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + cz_3\hat{\mathbf{z}}$	(2b)	Li I
${f B_6}$	=	$\frac{2}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2 + \left(z_3 + \frac{1}{2}\right)\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + c\left(z_3 + \frac{1}{2}\right)\hat{\mathbf{z}}$	(2b)	Li I
$\mathbf{B_7}$	=	$\frac{1}{3}\mathbf{a}_1 + \frac{2}{3}\mathbf{a}_2 + z_4\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + cz_4\hat{\mathbf{z}}$	(2b)	O II
$\mathbf{B_8}$	=	$\frac{2}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2 + \left(z_4 + \frac{1}{2}\right)\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + c\left(z_4 + \frac{1}{2}\right)\hat{\mathbf{z}}$	(2b)	O II

References

[1] C. Delmas, J.-J. Braconnier, and P. Hagenmuller, A new variety of LiCoO₂ with an unusual oxygen packing obtained by exchange reaction, Mater. Res. Bull. 17, 117–123 (1982), doi:10.1016/0025-5408(82)90192-1.

Found in

[1] N. Yabuuchi, Y. Kawamoto, R. Hara, T. Ishigaki, A. Hoshikawa, M. Yonemura, T. Kamiyama, and S. Komaba, A Comparative Study of LiCoO₂ Polymorphs: Structural and Electrochemical Characterization of O2-, O3-, and O4-type Phases, Inorg. Chem. **52**, 9131–9142 (2013), doi:10.1021/ic4013922.