α '-CuZrF₆ Structure: AB6C_cF32_225_a_e_b-001

ICSD

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. In preparation.

https://aflow.org/p/2016

https://aflow.org/p/AB6C_cF32_225_a_e_b-001 Cu **F** OZr Prototype ${\rm CuF_6Zr}$ AFLOW prototype label AB6C_cF32_225_a_e_b-001 none Pearson symbol cF32Space group number 225Space group symbol $Fm\overline{3}m$ **AFLOW** prototype command aflow --proto=AB6C_cF32_225_a_e_b-001

• CuZrF₆ exists in four forms, depending on the temperature. Structures below 500K show evidence of a Jahn-Teller distortion.

 $--params=a, x_3$

- $-\alpha'$ -CuZrF₆ (this structure) is the high temperature cubic form. Evidence from (Propach, 1978) shows this to be stable above ≈ 450 K. We use the lattice constant at 500K.
- $-\alpha$ -CuZrF₆ is stable above 383K. The fluorine (6f) sites are doubled, with only one of each pair occupied. We use data taken at 393K.
- $-\beta$ -CuZrF₆ is stable between 353 and 383K. In this case the Jahn-Teller distortion is locked in, so there are only six fluorine sites, all fully occupied.

- $\gamma\text{-CuZrF}_6$ is stable below 353K. Again each fluorine site is only half-filled.

• Although the other entries for $CuZrF_6$ have ICSD entries, the α ' phase does not.

Face-centered Cubic primitive vectors

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
B_1	=	0	=	0	(4a)	Cu I
$\mathbf{B_2}$	=	$rac{1}{2}{f a}_1+rac{1}{2}{f a}_2+rac{1}{2}{f a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{1}{2}a\mathbf{\hat{y}} + \frac{1}{2}a\mathbf{\hat{z}}$	(4b)	Zr I
B_3	=	$-x_3 \mathbf{a}_1 + x_3 \mathbf{a}_2 + x_3 \mathbf{a}_3$	=	$ax_3 \hat{\mathbf{x}}$	(24e)	FΙ
B_4	=	$x_3 \mathbf{a}_1 - x_3 \mathbf{a}_2 - x_3 \mathbf{a}_3$	=	$-ax_3 \mathbf{\hat{x}}$	(24e)	FΙ
$\mathbf{B_5}$	=	$x_3 \mathbf{a}_1 - x_3 \mathbf{a}_2 + x_3 \mathbf{a}_3$	=	$ax_3 \mathbf{\hat{y}}$	(24e)	FΙ
$\mathbf{B_6}$	=	$-x_3 \mathbf{a}_1 + x_3 \mathbf{a}_2 - x_3 \mathbf{a}_3$	=	$-ax_{3}\mathbf{\hat{y}}$	(24e)	FΙ
$\mathbf{B_{7}}$	=	$x_3 \mathbf{a}_1 + x_3 \mathbf{a}_2 - x_3 \mathbf{a}_3$	=	$ax_3 {f \hat{z}}$	(24e)	FΙ
$\mathbf{B_8}$	=	$-x_3 \mathbf{a}_1 - x_3 \mathbf{a}_2 + x_3 \mathbf{a}_3$	=	$-ax_3\mathbf{\hat{z}}$	(24e)	FΙ