## Cubic Lazarevićite $\left(\mathrm{AsCu}_{3} \mathrm{~S}_{4}\right)$ Structure: <br> AB3C4_cP8_215_a_c_e-001

This structure originally had the label AB3C4_cP8_215_a_c_e. Calls to that address will be redirected here.

Cite this page as: M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comput. Mater. Sci. 136, S1-828 (2017). doi: 10.1016/j.commatsci.2017.01.017


- This structure is very similar to sulvanite $\left(H 2_{4}\right)$, except that in this case the copper atoms are on the cubic faces [the (3c) sites] rather than the cubic edges [the (3d) sites]. The actual composition of the sample under study is $\mathrm{Cu}_{3}\left(\mathrm{As}_{0.65} \mathrm{Cu}_{0.20} \mathrm{Fe}_{0.13}\right) \mathrm{S}_{4}$. We will ignore the alloying on the arsenic site here.
- (Sclar, 1960) set $x_{3}=1 / 4$, but that is not required by symmetry and there is undoubtedly some relaxation.
- After much searching we finally obtained the original article for this structure from the Internet Archive. We thank them for making these documents available.


## Simple Cubic primitive vectors

$$
\stackrel{\mathrm{al}}{\mathrm{~L}_{\mathrm{a}}}
$$

$$
\begin{aligned}
& \mathbf{a}_{\mathbf{1}}=a \hat{\mathbf{x}} \\
& \mathbf{a}_{\mathbf{2}}=a \hat{\mathbf{y}} \\
& \mathbf{a}_{\mathbf{3}}=a \hat{\mathbf{z}}
\end{aligned}
$$



## Basis vectors

## Lattice coordinates

$\mathbf{B}_{1}=$
$\mathbf{B}_{2}=$
$\mathbf{B}_{3}=$
0 $\frac{1}{2} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$
$\frac{1}{2} \mathbf{a}_{1}+\frac{1}{2} \mathbf{a}_{3}$
$\frac{1}{2} \mathbf{a}_{1}+\frac{1}{2} \mathbf{a}_{2}$
$\mathbf{B}_{\mathbf{5}}=x_{3} \mathbf{a}_{1}+x_{3} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}$
$=\quad a x_{3} \hat{\mathbf{x}}+a x_{3} \hat{\mathbf{y}}+a x_{3} \hat{\mathbf{z}}$
$=$
$=\quad \frac{1}{2} a \hat{\mathbf{y}}+\frac{1}{2} a \hat{\mathbf{z}}$
$=\quad \frac{1}{2} a \hat{\mathbf{x}}+\frac{1}{2} a \hat{\mathbf{z}}$
$=\quad \frac{1}{2} a \hat{\mathbf{x}}+\frac{1}{2} a \hat{\mathbf{y}}$
$=\quad-a x_{3} \hat{\mathbf{x}}-a x_{3} \hat{\mathbf{y}}+a x_{3} \hat{\mathbf{z}}$
$\mathbf{B}_{6}=-x_{3} \mathbf{a}_{1}-x_{3} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}$
$=$
$=$
$-a x_{3} \hat{\mathbf{x}}+a x_{3} \hat{\mathbf{y}}-a x_{3} \hat{\mathbf{z}}$
$a x_{3} \hat{\mathbf{x}}-a x_{3} \hat{\mathbf{y}}-a x_{3} \hat{\mathbf{z}}$

| Wyckoff | Atom |
| :--- | :---: |
| position | type |

(1a)
(3c)
(3c)
(4e) S I
(4e)
(4e)
(4e) S I

## References

[1] C. B. Sclar and M. Drovenik, Lazarevićite, A New Cubic Copper-Arsenic Sulfied from Bor, Jugoslavia, Bull. Geo. Soc. Am. 71, 1970 (1960).
[2] M. Fleischer, New Mineral Names, Am. Mineral. 46, 464-468 (1961).
[3] P. Villars, K. Cenzual, J. Daams, R. Gladyshevskii, O. Shcherban, V. Dubenskyy, N. Melnichenko-Koblyuk, O. Pavlyuk, S. Stoiko, and L. Sysa, Structure Types. Part 2: Space Groups (218) P-43n - (195) P23 • Cu $A s S_{4}$ (2005), doi $10.1007 / 10920473 \_223$. Springer-Verlag Berlin Heidelberg.

## Found in

[1] P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1991), 2nd edn.

