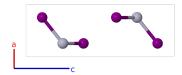

Coccinite (Red HgI₂, C13) Structure: AB2_tP6_137_a_d-001

This structure originally had the label AB2_tP6_137_a_d. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 2*, Comput. Mater. Sci. **161**, S1 (2019). doi: 10.1016/j.commatsci.2018.10.043


https://aflow.org/p/2F93

https://aflow.org/p/AB2_tP6_137_a_d-001

Prototype HgI_2

AFLOW prototype label AB2_tP6_137_a_d-001

Strukturbericht designation C13

Mineral name coccinite

ICSD 241175

Pearson symbol tP6

Space group number 137

Space group symbol $P4_2/nmc$

AFLOW prototype command aflow --proto=AB2_tP6_137_a_d-001

--params= $a, c/a, z_2$

- HgI₂ can be found in a variety of forms (Gumiński, 1997):
 - The ground state, coccinite (this structure), also known as red or α -HgI₂ and given the *Strukturbericht* designation C13. It is stable up to 135°C.
 - At higher temperatures this transforms into yellow or β -HgI₂ in the HgBr₂ (C24) structure. This is stable up to the melting point at 258°C.
 - (Schwarzenbach, 1969) studied the metastable orange HgI_2 body-centered tetragonal ($I4_1/amd \#141$) phase. This structure was refined by (Hostettler, 2002).
 - (Hostettler, 2002) also found a second orange HgI_2 phase in a simple tetragonal ($P4_2/nmc \#137$) cell.

- The last two structures differ by stacking order. (Hostettler, 2002) used them to produce an averaged orange HgI_2 structure, space group $P\overline{4}m2~\#115$.
- We use the data for coccinite taken by (Schwarzenbach, 2007) at 293 K.
- The CIF and POSCAR files contain the data at room temperature, 293 K. ZrO₂ (A2B_tP6_137_d_a) and HgI₂ (AB2_tP6_137_a_d) have similar AFLOW prototype labels (i.e., same symmetry and set of Wyckoff positions with different stoichiometry labels due to alphabetic ordering of atomic species). They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files

Simple Tetragonal primitive vectors

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$\frac{3}{4}\mathbf{a}_1 + \frac{1}{4}\mathbf{a}_2 + \frac{3}{4}\mathbf{a}_3$	=	$\frac{3}{4}a\hat{\mathbf{x}} + \frac{1}{4}a\hat{\mathbf{y}} + \frac{3}{4}c\hat{\mathbf{z}}$	(2a)	Hg I
$\mathbf{B_2}$	=	$rac{1}{4}{f a}_1 + rac{3}{4}{f a}_2 + rac{1}{4}{f a}_3$	=	$\frac{1}{4}a\hat{\mathbf{x}} + \frac{3}{4}a\hat{\mathbf{y}} + \frac{1}{4}c\hat{\mathbf{z}}$	(2a)	Hg I
${f B_3}$	=	$\frac{1}{4}\mathbf{a}_1 + \frac{1}{4}\mathbf{a}_2 + z_2\mathbf{a}_3$	=	$\frac{1}{4}a\mathbf{\hat{x}} + \frac{1}{4}a\mathbf{\hat{y}} + cz_2\mathbf{\hat{z}}$	(4d)	ΙΙ
${f B_4}$	=	$\frac{1}{4}\mathbf{a}_1 + \frac{1}{4}\mathbf{a}_2 + \left(z_2 + \frac{1}{2}\right)\mathbf{a}_3$	=	$\frac{1}{4}a\hat{\mathbf{x}} + \frac{1}{4}a\hat{\mathbf{y}} + c\left(z_2 + \frac{1}{2}\right)\hat{\mathbf{z}}$	(4d)	ΙΙ
${f B_5}$	=	$rac{3}{4}{f a}_1 + rac{3}{4}{f a}_2 - z_2{f a}_3$	=	$\frac{3}{4}a\mathbf{\hat{x}} + \frac{3}{4}a\mathbf{\hat{y}} - cz_2\mathbf{\hat{z}}$	(4d)	ΙΙ
${f B_6}$	=	$\frac{3}{4}\mathbf{a}_1 + \frac{3}{4}\mathbf{a}_2 - \left(z_2 - \frac{1}{2}\right)\mathbf{a}_3$	=	$\frac{3}{4}a\hat{\mathbf{x}} + \frac{3}{4}a\hat{\mathbf{y}} - c\left(z_2 - \frac{1}{2}\right)\hat{\mathbf{z}}$	(4d)	ΙΙ

References

- [1] D. Schwarzenbach, H. Birkedal, M. Hostettler, and P. Fischer, Neutron diffraction investigation of the temperature dependence of crystal structure and thermal motions of red HgI₂, Acta Crystallogr. Sect. B **63**, 826–835 (2007), doi:10.1107/S0108768107043327.
- [2] M. Hostettler, H. Birkedal, and D. Schwarzenbach, *The structure of orange HgI*₂. *I. Polytypic layer structure*, Acta Crystallogr. Sect. B **58**, 903–913 (2002), doi:10.1107/S010876810201618X.
- [3] D. Schwarzenbach, The crystal structure and one-dimensional disorder of the orange modification of HgI₂, Z. Kristallogr. 128, 97–114 (1969), doi:10.1524/zkri.1969.128.1-2.97.

Found in

[1] R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).