Orange (averaged) HgI₂ Structure: AB2_tP12_115_j_egi-001

This structure originally had the label AB2_tP12_115_j_egi. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 2*, Comput. Mater. Sci. **161**, S1 (2019). doi: 10.1016/j.commatsci.2018.10.043

https://aflow.org/p/RJ86

https://aflow.org/p/AB2_tP12_115_j_egi-001

Prototype HgI_2

AFLOW prototype label AB2_tP12_115_j_egi-001

ICSDnonePearson symboltP12Space group number115Space group symbol $P\overline{4}m2$

- HgI₂ can be found in a variety of forms (Gumiński, 1997):
 - The ground state, coccinite, also known as red or α -HgI₂ and given the *Strukturbericht* designation C13. It is stable up to 135°C.
 - At higher temperatures this transforms into yellow or β -HgI₂ in the HgBr₂ (C24) structure. This is stable up to the melting point at 258°C.

- (Schwarzenbach, 1969) studied the metastable orange HgI_2 body-centered tetragonal ($I4_1/amd \#141$) phase. This structure was refined by (Hostettler, 2002).
- (Hostettler, 2002) also found a second orange HgI_2 phase in a simple tetragonal ($P4_2/nmc \#137$) cell.
- The last two structures differ by stacking order. (Hostettler, 2002) used them to produce an averaged orange HgI_2 structure (this structure), space group $P\overline{4}m2$ #115.
- This structure is an "average" of the Orange I and Orange II structures. The averaging procedure places the iodine I atoms only 0.36\AA apart, so this is not a physical structure. We retain it as an example of a structure in space group $P\overline{4}m2$ #115.

Simple Tetragonal primitive vectors

$$\mathbf{a_1} = a \, \hat{\mathbf{x}}$$

$$\mathbf{a_2} = a\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c \, \hat{\mathbf{z}}$$

Basis vectors

	Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1} =$	$z_1{f a}_3$	=	$cz_1\mathbf{\hat{z}}$	(2e)	ΙΙ
$\mathbf{B_2} =$	$-z_1\mathbf{a}_3$	=	$-cz_1\mathbf{\hat{z}}$	(2e)	ΙΙ
$B_3 =$	$rac{1}{2}\mathbf{a}_2+z_2\mathbf{a}_3$	=	$rac{1}{2}a\hat{\mathbf{y}}+cz_2\hat{\mathbf{z}}$	(2g)	ΙII
$\mathbf{B_4} =$	$rac{1}{2}\mathbf{a}_1-z_2\mathbf{a}_3$	=	$rac{1}{2}a\mathbf{\hat{x}}-cz_2\mathbf{\hat{z}}$	(2g)	ΙII
${f B_5} =$	$x_3 \mathbf{a}_1 + x_3 \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$ax_3\hat{\mathbf{x}} + ax_3\hat{\mathbf{y}} + \frac{1}{2}c\hat{\mathbf{z}}$	(4i)	I III
$\mathbf{B_6} =$	$-x_3\mathbf{a}_1 - x_3\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$-ax_3\mathbf{\hat{x}}-ax_3\mathbf{\hat{y}}+ frac{1}{2}c\mathbf{\hat{z}}$	(4i)	I III
$\mathbf{B_7} =$	$x_3 \mathbf{a}_1 - x_3 \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$ax_3\mathbf{\hat{x}} - ax_3\mathbf{\hat{y}} + \frac{1}{2}c\mathbf{\hat{z}}$	(4i)	I III
$\mathbf{B_8} =$	$-x_3\mathbf{a}_1 + x_3\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$-ax_3\mathbf{\hat{x}} + ax_3\mathbf{\hat{y}} + \frac{1}{2}c\mathbf{\hat{z}}$	(4i)	I III
$\mathbf{B_9} =$	$x_4 \mathbf{a}_1 + z_4 \mathbf{a}_3$	=	$ax_4\mathbf{\hat{x}} + cz_4\mathbf{\hat{z}}$	(4j)	$\operatorname{Hg} \operatorname{I}$
$\mathbf{B_{10}} \ =$	$-x_4 \mathbf{a}_1 + z_4 \mathbf{a}_3$	=	$-ax_4\mathbf{\hat{x}} + cz_4\mathbf{\hat{z}}$	(4j)	Hg I
$\mathbf{B_{11}} =$	$-x_4\mathbf{a}_2-z_4\mathbf{a}_3$	=	$-ax_4\mathbf{\hat{y}}-cz_4\mathbf{\hat{z}}$	(4j)	$\operatorname{Hg} \operatorname{I}$
$\mathbf{B_{12}} \ =$	$x_4\mathbf{a}_2 - z_4\mathbf{a}_3$	=	$ax_4\mathbf{\hat{y}}-cz_4\mathbf{\hat{z}}$	(4j)	$_{\mathrm{Hg\ I}}$

References

- [1] M. Hostettler, H. Birkedal, and D. Schwarzenbach, *The structure of orange HgI₂. I. Polytypic layer structure*, Acta Crystallogr. Sect. B **58**, 903–913 (2002), doi:10.1107/S010876810201618X.
- [2] D. Schwarzenbach, The crystal structure and one-dimensional disorder of the orange modification of HgI₂, Z. Kristallogr. 128, 97–114 (1969), doi:10.1524/zkri.1969.128.1-2.97.
- [3] D. Schwarzenbach, H. Birkedal, M. Hostettler, and P. Fischer, Neutron diffraction investigation of the temperature dependence of crystal structure and thermal motions of red HgI₂, Acta Crystallogr. Sect. B **63**, 826–835 (2007), doi:10.1107/S0108768107043327.

Found in

1]	P. V	illars ar	nd K.	Cenzual,	$Pears on \hbox{\it 's}$	Crystal	Data	_	Crystal	Structure	Database	for	In organic	Compounds	(2013).	ASM
	Inte	rnationa	l.													