α -PdSn₂ Structure: AB2_tI48_142_d_ef-001

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 4.* In preparation.

https://aflow.org/p/FUUU

https://aflow.org/p/AB2_tI48_142_d_ef-001

- This structure is stable up to 600°C. (Villars, 2016)
- $PdSn_2$ has also been found in the orthorhombic C_e structure.
- The ICSD entry is from (Hellner, 1956), but we use the refined data from (Künnen, 2000) for this presentation.

Body-centered Tetragonal primitive vectors

 $\mathbf{a_1} = -\frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}a\,\hat{\mathbf{y}} + \frac{1}{2}c\,\hat{\mathbf{z}}$ $\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{1}{2}a\,\hat{\mathbf{y}} + \frac{1}{2}c\,\hat{\mathbf{z}}$ $\mathbf{a_3} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}a\,\hat{\mathbf{y}} - \frac{1}{2}c\,\hat{\mathbf{z}}$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$\left(z_1+rac{1}{4} ight){f a}_1+z_1{f a}_2+rac{1}{4}{f a}_3$	=	$rac{1}{4}a\mathbf{\hat{y}}+cz_{1}\mathbf{\hat{z}}$	(16d)	Pd I
B_2	=	$z_1 {f a}_1 + \left(z_1 + rac{1}{4} ight) {f a}_2 + rac{3}{4} {f a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{1}{4}a\mathbf{\hat{y}} + c\left(z_1 - \frac{1}{4}\right)\mathbf{\hat{z}}$	(16d)	Pd I
B_3	=	$-\left(z_{1}-rac{1}{4} ight)\mathbf{a}_{1}-\left(z_{1}-rac{1}{2} ight)\mathbf{a}_{2}+ rac{3}{4}\mathbf{a}_{3}$	=	$rac{1}{2}a\mathbf{\hat{x}}+rac{1}{4}a\mathbf{\hat{y}}-cz_{1}\mathbf{\hat{z}}$	(16d)	Pd I
B_4	=	$-\left(z_{1}-rac{1}{2} ight)\mathbf{a}_{1}-\left(z_{1}-rac{1}{4} ight)\mathbf{a}_{2}+rac{1}{4}\mathbf{a}_{3}$	=	$rac{1}{4}a\mathbf{\hat{y}}-c\left(z_{1}-rac{1}{4} ight)\mathbf{\hat{z}}$	(16d)	Pd I
$\mathbf{B_5}$	=	$-\left(z_{1}-rac{3}{4} ight){f a}_{1}-z_{1}{f a}_{2}+rac{3}{4}{f a}_{3}$	=	$rac{3}{4}a\mathbf{\hat{y}}-cz_{1}\mathbf{\hat{z}}$	(16d)	Pd I
\mathbf{B}_{6}	=	$-z_1 \mathbf{a}_1 - \left(z_1 - rac{3}{4} ight) \mathbf{a}_2 + rac{1}{4} \mathbf{a}_3$	=	$rac{1}{2}a\mathbf{\hat{x}} - rac{1}{4}a\mathbf{\hat{y}} - c\left(z_1 - rac{1}{4} ight)\mathbf{\hat{z}}$	(16d)	Pd I
$\mathbf{B_7}$	=	$\left(z_1+\frac{3}{4}\right) \mathbf{a}_1 + \left(z_1+\frac{1}{2}\right) \mathbf{a}_2 + \frac{1}{4} \mathbf{a}_3$	=	$\frac{1}{4}a\mathbf{\hat{y}}+c\left(z_{1}+\frac{1}{2} ight)\mathbf{\hat{z}}$	(16d)	Pd I
$\mathbf{B_8}$	=	$(z_1 + \frac{1}{2}) \mathbf{a}_1 + (z_1 + \frac{3}{4}) \mathbf{a}_2 + \frac{3}{4} \mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{1}{4}a\hat{\mathbf{y}} + c\left(z_1 + \frac{1}{4}\right)\hat{\mathbf{z}}$	(16d)	Pd I
\mathbf{B}_{9}	=	$\frac{1}{4}\mathbf{a}_1 + \left(x_2 + \frac{1}{4}\right)\mathbf{a}_2 + x_2\mathbf{a}_3$	=	$ax_2\mathbf{\hat{x}} + \frac{1}{4}c\mathbf{\hat{z}}$	(16e)	Sn I
$\mathbf{B_{10}}$	=	$\frac{3}{4}\mathbf{a}_1 - \left(x_2 - \frac{1}{4}\right)\mathbf{a}_2 - \left(x_2 - \frac{1}{2}\right)\mathbf{a}_3$	=	$-ax_2\hat{\mathbf{x}}+rac{1}{2}a\hat{\mathbf{y}}+rac{1}{4}c\hat{\mathbf{z}}$	(16e)	Sn I
$\mathbf{B_{11}}$	=	$\left(x_2 + \frac{1}{4}\right) \mathbf{a}_1 + \frac{3}{4} \mathbf{a}_2 + x_2 \mathbf{a}_3$	=	$\frac{1}{4}a\hat{\mathbf{x}} + a\left(x_2 - \frac{1}{4}\right)\hat{\mathbf{y}} + \frac{1}{2}c\hat{\mathbf{z}}$	(16e)	Sn I
B ₁₂	=	$-\left(\! \begin{array}{c} x_2 - \frac{1}{4} \end{array}\!\right) \mathbf{a}_1 + \frac{1}{4} \mathbf{a}_2 - \\ \left(\! \begin{array}{c} x_2 - \frac{1}{2} \end{array}\!\right) \mathbf{a}_3 \end{array}$	=	$rac{1}{4}a\mathbf{\hat{x}}-a\left(x_2-rac{1}{4} ight)\mathbf{\hat{y}}$	(16e)	Sn I
B_{13}	=	$rac{3}{4} \mathbf{a}_1 - \left(x_2 - rac{3}{4} ight) \mathbf{a}_2 - x_2 \mathbf{a}_3$	=	$-ax_2\mathbf{\hat{x}} + \frac{3}{4}c\mathbf{\hat{z}}$	(16e)	Sn I
$\mathbf{B_{14}}$	=	$\frac{1}{4}\mathbf{a}_1 + \left(x_2 + \frac{3}{4}\right)\mathbf{a}_2 + \left(x_2 + \frac{1}{2}\right)\mathbf{a}_3$	=	$a\left(x_2+rac{1}{2} ight)\hat{\mathbf{x}}+rac{1}{4}c\hat{\mathbf{z}}$	(16e)	${ m Sn}$ I
B_{15}	=	$-\left(x_2-rac{3}{4} ight){f a}_1+rac{1}{4}{f a}_2-x_2{f a}_3$	=	$-\frac{1}{4}a\hat{\mathbf{x}} - a\left(x_2 - \frac{1}{4}\right)\hat{\mathbf{y}} + \frac{1}{2}c\hat{\mathbf{z}}$	(16e)	Sn I
$\mathbf{B_{16}}$	=	$(x_2 + \frac{3}{4}) \mathbf{a}_1 + \frac{3}{4} \mathbf{a}_2 + (x_2 + \frac{1}{2}) \mathbf{a}_3$	=	$\frac{1}{4}a\hat{\mathbf{x}} + a\left(x_2 + \frac{1}{4}\right)\hat{\mathbf{y}} + \frac{1}{2}c\hat{\mathbf{z}}$	(16e)	Sn I
B ₁₇	=	$ \begin{pmatrix} x_3 + rac{3}{8} \end{pmatrix} \mathbf{a}_1 + \begin{pmatrix} x_3 + rac{1}{8} \end{pmatrix} \mathbf{a}_2 + \\ \begin{pmatrix} 2x_3 + rac{1}{4} \end{pmatrix} \mathbf{a}_3 $	=	$ax_3\hat{\mathbf{x}} + a\left(x_3 + \frac{1}{4}\right)\hat{\mathbf{y}} + \frac{1}{8}c\hat{\mathbf{z}}$	(16f)	Sn II
B ₁₈	=	$-\left(x_3 - \frac{3}{8}\right) \mathbf{a}_1 - \left(x_3 - \frac{1}{8}\right) \mathbf{a}_2 - \\ \left(2x_3 - \frac{1}{4}\right) \mathbf{a}_3$	=	$-ax_3\mathbf{\hat{x}} - a\left(x_3 - \frac{1}{4}\right)\mathbf{\hat{y}} + \frac{1}{8}c\mathbf{\hat{z}}$	(16f)	Sn II
B_{19}	=	$\left(x_3 + \frac{1}{8}\right) \mathbf{a}_1 - \left(x_3 - \frac{3}{8}\right) \mathbf{a}_2 + \frac{3}{4} \mathbf{a}_3$	=	$-a\left(x_{3}-\frac{1}{2}\right)\hat{\mathbf{x}}+a\left(x_{3}+\frac{1}{4}\right)\hat{\mathbf{y}}-\frac{1}{8}c\hat{\mathbf{z}}$	(16f)	Sn II
B ₂₀	=	$-\left(x_{3}-rac{1}{8} ight) \mathbf{a}_{1}+\left(x_{3}+rac{3}{8} ight) \mathbf{a}_{2}+rac{3}{4}\mathbf{a}_{3}$	=	$a\left(x_3+\frac{1}{2}\right)\hat{\mathbf{x}}-a\left(x_3-\frac{1}{4}\right)\hat{\mathbf{y}}-\frac{1}{8}c\hat{\mathbf{z}}$	(16f)	Sn II
B ₂₁	=	$-\left(x_3 - \frac{5}{8}\right) \mathbf{a}_1 - \left(x_3 - \frac{7}{8}\right) \mathbf{a}_2 - \\ \left(2x_3 - \frac{3}{4}\right) \mathbf{a}_3$	=	$-a\left(x_3-\frac{1}{2}\right)\hat{\mathbf{x}}-a\left(x_3-\frac{1}{4}\right)\hat{\mathbf{y}}+\frac{3}{8}c\hat{\mathbf{z}}$	(16f)	Sn II
B ₂₂	=	$ig(x_3+rac{5}{8}ig) {f a}_1 + ig(x_3+rac{7}{8}ig) {f a}_2 + \ ig(2x_3+rac{3}{4}ig) {f a}_3$	=	$a\left(x_3+\frac{1}{2}\right)\hat{\mathbf{x}}+a\left(x_3+\frac{1}{4}\right)\hat{\mathbf{y}}+\frac{3}{8}c\hat{\mathbf{z}}$	(16f)	Sn II
B ₂₃	=	$-\left(x_{3}-rac{7}{8} ight) {f a}_{1}+\left(x_{3}+rac{5}{8} ight) {f a}_{2}+rac{1}{4} {f a}_{3}$	=	$ax_3\mathbf{\hat{x}} - a\left(x_3 - \frac{1}{4} ight)\mathbf{\hat{y}} + \frac{5}{8}c\mathbf{\hat{z}}$	(16f)	Sn II
B_{24}	=	$\left(x_3 + \frac{7}{8}\right) \mathbf{a}_1 - \left(x_3 - \frac{5}{8}\right) \mathbf{a}_2 + \frac{1}{4} \mathbf{a}_3$	=	$-ax_3\mathbf{\hat{x}} + a\left(x_3 + \frac{1}{4}\right)\mathbf{\hat{y}} + \frac{5}{8}c\mathbf{\hat{z}}$	(16f)	Sn II

References

- [1] E. Hellner, Flu-Misch-Typen, Zeitschrift für Kristallographie 107, 99–123 (1956), doi:10.1524/zkri.1956.107.16.99.
- [2] P. Villars, ed., PAULING FILE (Springer, 2016), chap. Pd-Sn Binary Phase Diagram 0-100 at.% Sn.

Found in

 B. Künnen, D. Niepmann, and W. Jeitschko, Structure refinements and some properties of the transition metal stannides Os₃Sn₇, Ir₅Sn₇, Ni_{0.402(4)}Pd_{0.598}Sn₄, α-PdSn₂ and PtSn₄, J. Alloys Compd. **309**, 1–9 (2000), doi:10.1016/S0925-8388(00)01042-2.