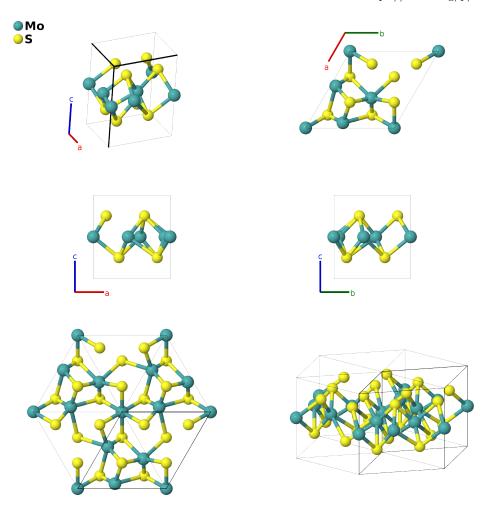
Trigonal MoS₂ Structure: AB2_hP12_143_ad_bc2d-001

This structure originally had the label AB2_hP12_143_cd_ab2d. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 2*, Comput. Mater. Sci. **161**, S1 (2019). doi: 10.1016/j.commatsci.2018.10.043

https://aflow.org/p/1G0H

 $https://aflow.org/p/AB2_hP12_143_ad_bc2d-001$



Prototype MoS_2

AFLOW prototype label AB2_hP12_143_ad_bc2d-001

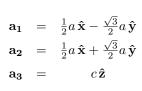
ICSDnonePearson symbolhP12Space group number143Space group symbolP3

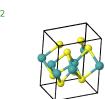
AFLOW prototype command aflow --proto=AB2_hP12_143_ad_bc2d-001

--params= $a, c/a, z_1, z_2, z_3, x_4, y_4, z_4, x_5, y_5, z_5, x_6, y_6, z_6$

- MoS_2 exists naturally in two forms: a rhombohedral structure and the hexagonal structure, molybdenite, Strukturbericht C7. The two structures differ due to the stacking of the MoS_2 layers.
- ullet Depending on the preparation method, MoS₂ can exist in other forms, including this trigonal structure.
- Space group P3 # 143 allows an arbitrary choice of the origin of the z-axis. Here we choose $z_1 = 1/2$ for the Mo I site.

Trigonal (Hexagonal) primitive vectors





Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$z_1{f a}_3$	=	$cz_1\mathbf{\hat{z}}$	(1a)	Mo I
$\mathbf{B_2}$	=	$\frac{1}{3}\mathbf{a}_1 + \frac{2}{3}\mathbf{a}_2 + z_2\mathbf{a}_3$	=	$rac{1}{2}a\mathbf{\hat{x}}+rac{\sqrt{3}}{6}a\mathbf{\hat{y}}+cz_2\mathbf{\hat{z}}$	(1b)	SI
$\mathbf{B_3}$	=	$\frac{2}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2 + z_3\mathbf{a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} - \frac{\sqrt{3}}{6}a\mathbf{\hat{y}} + cz_3\mathbf{\hat{z}}$	(1c)	S II
${f B_4}$	=	$x_4 \mathbf{a}_1 + y_4 \mathbf{a}_2 + z_4 \mathbf{a}_3$	=	$\frac{1}{2}a(x_4+y_4) \hat{\mathbf{x}} - \frac{\sqrt{3}}{2}a(x_4-y_4) \hat{\mathbf{y}} + cz_4 \hat{\mathbf{z}}$	(3d)	Mo II
${f B_5}$	=	$-y_4 \mathbf{a}_1 + (x_4 - y_4) \mathbf{a}_2 + z_4 \mathbf{a}_3$	=	$\frac{1}{2}a(x_4-2y_4)\hat{\mathbf{x}}+\frac{\sqrt{3}}{2}ax_4\hat{\mathbf{y}}+cz_4\hat{\mathbf{z}}$	(3d)	Mo II
${f B_6}$	=	$-(x_4-y_4) \mathbf{a}_1 - x_4 \mathbf{a}_2 + z_4 \mathbf{a}_3$	=	$-\frac{1}{2}a(2x_4-y_4)\hat{\mathbf{x}}-\frac{\sqrt{3}}{2}ay_4\hat{\mathbf{y}}+cz_4\hat{\mathbf{z}}$	(3d)	Mo II
$\mathbf{B_7}$	=	$x_5 \mathbf{a}_1 + y_5 \mathbf{a}_2 + z_5 \mathbf{a}_3$	=	$\frac{1}{2}a(x_5+y_5) \hat{\mathbf{x}} - \frac{\sqrt{3}}{2}a(x_5-y_5) \hat{\mathbf{y}} + cz_5 \hat{\mathbf{z}}$	(3d)	S III
$\mathbf{B_8}$	=	$-y_5 \mathbf{a}_1 + (x_5 - y_5) \mathbf{a}_2 + z_5 \mathbf{a}_3$	=	$\frac{1}{2}a(x_5-2y_5)\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}ax_5\mathbf{\hat{y}}+cz_5\mathbf{\hat{z}}$	(3d)	S III
$\mathbf{B_9}$	=	$-(x_5-y_5) \mathbf{a}_1 - x_5 \mathbf{a}_2 + z_5 \mathbf{a}_3$	=	$-\frac{1}{2}a(2x_5-y_5)\hat{\mathbf{x}}-\frac{\sqrt{3}}{2}ay_5\hat{\mathbf{y}}+cz_5\hat{\mathbf{z}}$	(3d)	S III
${\bf B_{10}}$	=	$x_6 \mathbf{a}_1 + y_6 \mathbf{a}_2 + z_6 \mathbf{a}_3$	=	$\frac{1}{2}a(x_6+y_6) \hat{\mathbf{x}} - \frac{\sqrt{3}}{2}a(x_6-y_6) \hat{\mathbf{y}} + cz_6 \hat{\mathbf{z}}$	(3d)	S IV
$\mathbf{B_{11}}$	=	$-y_6 \mathbf{a}_1 + (x_6 - y_6) \mathbf{a}_2 + z_6 \mathbf{a}_3$	=	$\frac{1}{2}a(x_6-2y_6)\hat{\mathbf{x}}+\frac{\sqrt{3}}{2}ax_6\hat{\mathbf{y}}+cz_6\hat{\mathbf{z}}$	(3d)	S IV
$\mathbf{B_{12}}$	=	$-(x_6-y_6) \mathbf{a}_1 - x_6 \mathbf{a}_2 + z_6 \mathbf{a}_3$	=	$-\frac{1}{2}a(2x_6-y_6)\hat{\mathbf{x}}-\frac{\sqrt{3}}{2}ay_6\hat{\mathbf{y}}+cz_6\hat{\mathbf{z}}$	(3d)	S IV

References

[1] K. E. Dungey, M. D. Curtis, and J. E. Penner-Hahn, Structural Characterization and Thermal Stability of MoS₂ Intercalation Compounds, Chem. Mater. **10**, 2152–2161 (1998), doi:10.1021/cm980034u.