# Parkerite (Ni<sub>3</sub>Bi<sub>2</sub>S<sub>4</sub>) Structure: AB2C\_oP8\_51\_e\_be\_f-001

This structure originally had the label AB2C\_oP8\_51\_e\_be\_f. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 3*, Comput. Mater. Sci. **199**, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

https://aflow.org/p/LY1V

 $https://aflow.org/p/AB2C\_oP8\_51\_e\_be\_f-001$ 



Prototype  $Bi_2Ni_3S_2$ 

AFLOW prototype label AB2C\_oP8\_51\_e\_be\_f-001

Mineral name parkerite

ICSD 70052

Pearson symbol oP8

Space group number 51

Space group symbol Pmma

AFLOW prototype command aflow --proto=AB2C\_oP8\_51\_e\_be\_f-001

--params= $a, b/a, c/a, z_2, z_3, z_4$ 

## Other compounds with this structure

 $Ni_3(Bi, Pb)_2S_4$ 

- (Fleet, 1973) states that parkerite is a derivative of the shandite (Ni<sub>3</sub>Pb<sub>2</sub>S<sub>2</sub>) structure, and changes to shandite if more than 4% of the bismuth is replaced by lead.
- $\bullet\,$  The Ni-II (2e) site is occupied 50% of the time, given the observed stoichiometry.
- Earlier sources give parkerite a monoclinic structure. This may be due to an ordering of the nickel atoms at lower temperature. We follow (Downs, 2003) and use the orthorhombic structure.

• (Fleet, 1973) describes the structure in the *Pmam* setting of space group #51. We used FINDSYM to transform it to the standard *Pmma* setting.

## Simple Orthorhombic primitive vectors



$$\mathbf{a_1} = a\,\hat{\mathbf{x}}$$

$$\mathbf{a_2} = b\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c \hat{\mathbf{z}}$$



#### Basis vectors

|                |   | Lattice coordinates                                                   |   | Cartesian coordinates                                                                | Wyckoff position | $\begin{array}{c} \text{Atom} \\ \text{type} \end{array}$ |
|----------------|---|-----------------------------------------------------------------------|---|--------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------|
| $\mathbf{B_1}$ | = | $rac{1}{2}\mathbf{a}_2$                                              | = | $rac{1}{2}b\mathbf{\hat{y}}$                                                        | (2b)             | Ni I                                                      |
| $\mathbf{B_2}$ | = | $rac{1}{2}\mathbf{a}_1+rac{1}{2}\mathbf{a}_2$                       | = | $\frac{1}{2}a\hat{\mathbf{x}} + \frac{1}{2}b\hat{\mathbf{y}}$                        | (2b)             | Ni I                                                      |
| $\mathbf{B_3}$ | = | $\frac{1}{4}{f a}_1 + z_2{f a}_3$                                     | = | $\frac{1}{4}a\hat{\mathbf{x}} + cz_2\hat{\mathbf{z}}$                                | (2e)             | Bi I                                                      |
| ${f B_4}$      | = | $rac{3}{4}{f a}_1 - z_2{f a}_3$                                      | = | $\frac{3}{4}a\hat{\mathbf{x}}-cz_2\hat{\mathbf{z}}$                                  | (2e)             | Bi I                                                      |
| ${f B_5}$      | = | $\frac{1}{4}{f a}_1 + z_3{f a}_3$                                     | = | $\frac{1}{4}a\hat{\mathbf{x}} + cz_3\hat{\mathbf{z}}$                                | (2e)             | Ni II                                                     |
| ${f B_6}$      | = | $rac{3}{4}{f a}_1-z_3{f a}_3$                                        | = | $\frac{3}{4}a\hat{\mathbf{x}}-cz_3\hat{\mathbf{z}}$                                  | (2e)             | Ni II                                                     |
| $\mathbf{B_7}$ | = | $\frac{1}{4}\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 + z_4\mathbf{a}_3$ | = | $\frac{1}{4}a\mathbf{\hat{x}} + \frac{1}{2}b\mathbf{\hat{y}} + cz_4\mathbf{\hat{z}}$ | (2f)             | SI                                                        |
| $\mathbf{B_8}$ | = | $\frac{3}{4}\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 - z_4\mathbf{a}_3$ | = | $\frac{3}{4}a\mathbf{\hat{x}} + \frac{1}{2}b\mathbf{\hat{y}} - cz_4\mathbf{\hat{z}}$ | (2f)             | SI                                                        |

### References

- [1] M. E. Fleet, The Crystal Structure of Parkerite  $(Ni_3Bi_2S_4)$ , Am. Mineral. 58, 435–439 (1973).
- [2] R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).