# High Temperature $\text{SmBaMn}_2\text{O}_6$ Structure: AB2C6D\_oC40\_65\_g\_n\_ijklm\_h-001

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 4.* In preparation.

https://aflow.org/p/VMAN

https://aflow.org/p/AB2C6D\_oC40\_65\_g\_n\_ijklm\_h-001



| Prototype               | $BaMn_2O_6Sm$                                                                                                                                                                                                           |  |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| AFLOW prototype label   | AB2C6D_oC40_65_g_n_ijklm_h-001                                                                                                                                                                                          |  |  |
| ICSD                    | none                                                                                                                                                                                                                    |  |  |
| Pearson symbol          | oC40                                                                                                                                                                                                                    |  |  |
| Space group number      | 65                                                                                                                                                                                                                      |  |  |
| Space group symbol      | Cmmm                                                                                                                                                                                                                    |  |  |
| AFLOW prototype command | aflowproto=AB2C6D_oC40_65_g_n_ijklm_h-001<br>params=a, b/a, c/a, x <sub>1</sub> , x <sub>2</sub> , y <sub>3</sub> , y <sub>4</sub> , z <sub>5</sub> , z <sub>6</sub> , z <sub>7</sub> , y <sub>8</sub> , z <sub>8</sub> |  |  |

- SmBaMn<sub>2</sub>O<sub>6</sub> undergoes several structural and magnetic phase transitions with changing temperature (Sagayama, 2014; Chen, 2019):
  - Below 190K the structure is in a polar orthorhombic phase with space group  $Pmc2_1 \# 26$ .
  - Between 190K and 362 K the structure is in a non-polar orthorhombic phase with space group Pnma #62.
  - Above 362 K the structure is in quadrupled perovskite orthorhombic phase with space group Cmmm #65 (this structure).
  - In the high temperature phase the samarium and barium sites may be disordered, in which case the system is in the cubic perovskite  $(E2_1)$  structure.

- Here we use the structural information from (Sagayama, 2019) at 400K.
- The cubic perovskite phase may be recovered from this structure by replacing the barium atoms by samarium, setting a = b = c, and setting all variable Wyckoff position parameters to 1/4.

#### **Base-centered Orthorhombic primitive vectors**

| $\mathbf{a}_1$ | = | $\frac{1}{2}a\mathbf{\hat{x}} - \frac{1}{2}b\mathbf{\hat{y}}$ |
|----------------|---|---------------------------------------------------------------|
| $a_2$          | = | $\frac{1}{2}a\mathbf{\hat{x}} + \frac{1}{2}b\mathbf{\hat{y}}$ |
| $a_3$          | = | $c\mathbf{\hat{z}}$                                           |



#### **Basis vectors**

|                   |   | Lattice<br>coordinates                                              |   | Cartesian<br>coordinates                                                           | Wyckoff<br>position | Atom<br>type             |
|-------------------|---|---------------------------------------------------------------------|---|------------------------------------------------------------------------------------|---------------------|--------------------------|
| $\mathbf{B_1}$    | = | $x_1 \mathbf{a}_1 + x_1 \mathbf{a}_2$                               | = | $ax_1  \hat{\mathbf{x}}$                                                           | (4g)                | Ba I                     |
| $\mathbf{B_2}$    | = | $-x_1 \mathbf{a}_1 - x_1 \mathbf{a}_2$                              | = | $-ax_1\mathbf{\hat{x}}$                                                            | (4g)                | Ba I                     |
| $\mathbf{B_3}$    | = | $x_2 \mathbf{a}_1 + x_2 \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$    | = | $ax_2\mathbf{\hat{x}} + \frac{1}{2}c\mathbf{\hat{z}}$                              | (4h)                | ${ m Sm}$ I              |
| $\mathbf{B_4}$    | = | $-x_2 \mathbf{a}_1 - x_2 \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$   | = | $-ax_2\hat{\mathbf{x}}+\frac{1}{2}c\hat{\mathbf{z}}$                               | (4h)                | $\mathrm{Sm}~\mathrm{I}$ |
| $\mathbf{B}_{5}$  | = | $-y_3\mathbf{a}_1+y_3\mathbf{a}_2$                                  | = | $by_3\mathbf{\hat{y}}$                                                             | (4i)                | ΟΙ                       |
| $\mathbf{B_6}$    | = | $y_3  \mathbf{a}_1 - y_3  \mathbf{a}_2$                             | = | $-by_3{f \hat{y}}$                                                                 | (4i)                | ΟΙ                       |
| $\mathbf{B_{7}}$  | = | $-y_4  \mathbf{a}_1 + y_4  \mathbf{a}_2 + rac{1}{2}  \mathbf{a}_3$ | = | $by_4\mathbf{\hat{y}}+rac{1}{2}c\mathbf{\hat{z}}$                                 | (4j)                | O II                     |
| $\mathbf{B_8}$    | = | $y_4  \mathbf{a}_1 - y_4  \mathbf{a}_2 + rac{1}{2}  \mathbf{a}_3$  | = | $-by_4{f \hat y}+{1\over 2}c{f \hat z}$                                            | (4j)                | O II                     |
| $\mathbf{B}_{9}$  | = | $z_5  {f a}_3$                                                      | = | $cz_5\mathbf{\hat{z}}$                                                             | (4k)                | O III                    |
| $B_{10} \\$       | = | $-z_5\mathbf{a}_3$                                                  | = | $-cz_5\mathbf{\hat{z}}$                                                            | (4k)                | O III                    |
| $B_{11}$          | = | $rac{1}{2}{f a}_1+rac{1}{2}{f a}_2+z_6{f a}_3$                    | = | $\frac{1}{2}a\mathbf{\hat{x}} + cz_6\mathbf{\hat{z}}$                              | (4l)                | O IV                     |
| $\mathbf{B_{12}}$ | = | $rac{1}{2}{f a}_1+rac{1}{2}{f a}_2-z_6{f a}_3$                    | = | $\frac{1}{2}a\mathbf{\hat{x}} - cz_6\mathbf{\hat{z}}$                              | (4l)                | O IV                     |
| $B_{13}$          | = | $rac{1}{2}\mathbf{a}_2+z_7\mathbf{a}_3$                            | = | $rac{1}{4}a\mathbf{\hat{x}}+rac{1}{4}b\mathbf{\hat{y}}+cz_{7}\mathbf{\hat{z}}$   | (8m)                | O V                      |
| $B_{14}$          | = | $rac{1}{2} {f a}_1 - z_7 {f a}_3$                                  | = | $rac{1}{4}a\mathbf{\hat{x}} - rac{1}{4}b\mathbf{\hat{y}} - cz_7\mathbf{\hat{z}}$ | (8m)                | O V                      |
| $B_{15}$          | = | $rac{1}{2} {f a}_2 - z_7 {f a}_3$                                  | = | $rac{1}{4}a\mathbf{\hat{x}} + rac{1}{4}b\mathbf{\hat{y}} - cz_7\mathbf{\hat{z}}$ | (8m)                | O V                      |
| $\mathbf{B_{16}}$ | = | $rac{1}{2}\mathbf{a}_1+z_7\mathbf{a}_3$                            | = | $rac{1}{4}a\mathbf{\hat{x}} - rac{1}{4}b\mathbf{\hat{y}} + cz_7\mathbf{\hat{z}}$ | (8m)                | O V                      |
| $B_{17}$          | = | $-y_8  \mathbf{a}_1 + y_8  \mathbf{a}_2 + z_8  \mathbf{a}_3$        | = | $by_8\mathbf{\hat{y}}+cz_8\mathbf{\hat{z}}$                                        | (8n)                | Mn I                     |
| $B_{18}$          | = | $y_8  \mathbf{a}_1 - y_8  \mathbf{a}_2 + z_8  \mathbf{a}_3$         | = | $-by_{8}\mathbf{\hat{y}}+cz_{8}\mathbf{\hat{z}}$                                   | (8n)                | Mn I                     |
| $B_{19}$          | = | $-y_8 \mathbf{a}_1 + y_8 \mathbf{a}_2 - z_8 \mathbf{a}_3$           | = | $by_8\mathbf{\hat{y}}-cz_8\mathbf{\hat{z}}$                                        | (8n)                | Mn I                     |
| $\mathbf{B_{20}}$ | = | $y_8  \mathbf{a}_1 - y_8  \mathbf{a}_2 - z_8  \mathbf{a}_3$         | = | $-by_{8}\mathbf{\hat{y}}-cz_{8}\mathbf{\hat{z}}$                                   | (8n)                | Mn I                     |

### References

 H. Sagayama, S. Toyoda, K. Sugimoto, Y. Maeda, S. Yamada, and T. Arima, Ferroelectricity driven by charge ordering in the A-site ordered perovskite manganite SmBaMn<sub>2</sub>O<sub>6</sub>, Phys. Rev. B 96, 241113(R) (2014), doi:10.1103/PhysRevB.90.241113.

## Found in

 L. Chen, Z. Xiang, C. Tinsman, Q. Huang, K. G. Reynolds, H. Zhou, and L. Li, Anomalous thermal conductivity across the structural transition in SmBaMn<sub>2</sub>O<sub>6</sub> single crystals, Appl. Phys. Lett. **114**, 251904 (2019), doi:10.1063/1.5096960.