$\mathrm{GeSb}_{2} \mathrm{Te}_{4}$ Structure:

AB2C4 hR7_166_a_c_2c-002
Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. In preparation.

Other compounds with this structure
$\mathrm{GeBi}_{2} \mathrm{Te}_{4}, \mathrm{PbSb}_{2} \mathrm{Te}_{4}, \mathrm{SnSb}_{2} \mathrm{Te}_{4}$

- This structure is nearly identical to $\mathrm{MnBi}_{2} \mathrm{Te}_{4}$, but the assumed ordering of the tellurium atoms is different in the two cases.
- We use the data from (Agaev, 1966) as reported by (Matsunaga, 2004), however the ICSD entry states that all of the (2c) sites have occupancy $\mathrm{Te}_{0.66} \mathrm{Sb}_{33}$. We follow (Matsunaga, 2004) and label the first (2c) site as Sb with the other two Te , preserving the stiochiometry.
- Hexagonal settings of this structure can be obtained with the option --hex.

Rhombohedral primitive vectors

$$
\begin{aligned}
& \mathbf{a}_{\mathbf{1}}= \\
& \mathbf{a}_{2}=\frac{1}{2} a \hat{\mathbf{x}}-\frac{\sqrt{3}}{6} a \hat{\mathbf{y}}+\frac{1}{3} c \hat{\mathbf{z}} \\
& \mathbf{a}_{3}
\end{aligned}=-\frac{1}{\sqrt{3}} a \hat{\mathbf{y}}+\frac{1}{3} c \hat{\mathbf{z}}-\frac{\sqrt{3}}{6} a \hat{\mathbf{y}}+\frac{1}{3} c \hat{\mathbf{z}} \quad l
$$

Basis vectors

Lattice	Cartesian
coordinates	coordinates

$\mathrm{B}_{1}=$
0
$\mathbf{B}_{2}=$
$x_{2} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+x_{2} \mathbf{a}_{3}$
$=$
$\mathbf{B}_{3}=$
$-x_{2} \mathbf{a}_{1}-x_{2} \mathbf{a}_{2}-x_{2} \mathbf{a}_{3}$
$=$
$\mathbf{B}_{4}=$
$x_{3} \mathbf{a}_{1}+x_{3} \mathbf{a}_{2}+x_{3} \mathbf{a}_{3}$
$=$
$B_{5}=$
$-x_{3} \mathbf{a}_{1}-x_{3} \mathbf{a}_{2}-x_{3} \mathbf{a}_{3}$
$=$
$\mathrm{B}_{6}=$
$x_{4} \mathbf{a}_{1}+x_{4} \mathbf{a}_{2}+x_{4} \mathbf{a}_{3}$
$=$
$B_{7}=$
$-x_{4} \mathbf{a}_{1}-x_{4} \mathbf{a}_{2}-x_{4} \mathbf{a}_{3}$
coordinates

$$
\begin{gathered}
0 \\
c x_{2} \hat{\mathbf{z}} \\
-c x_{2} \hat{\mathbf{z}} \\
c x_{3} \hat{\mathbf{z}} \\
-c x_{3} \hat{\mathbf{z}} \\
c x_{4} \hat{\mathbf{z}} \\
-c x_{4} \hat{\mathbf{z}}
\end{gathered}
$$

Wyckoff Atom
position type

$(1 \mathrm{a})$	Ge I
$(2 \mathrm{c})$	Sb I
$(2 \mathrm{c})$	Sb I
$(2 \mathrm{c})$	Te I
$(2 \mathrm{c})$	Te I
$(2 \mathrm{c})$	Te II
$(2 \mathrm{c})$	Te II

References

[1] T. Matsunaga and N. Yamada, Structural investigation of $G e S b_{2} T e_{4}: A$ high-speed phase-change material, Phys. Rev. B 69, 104111 (2004), doi 10.1103/PhysRevB.69.104111.
[2] K. A. Agaev and A. G. Talybov, Electron-diffraction analysis of structure of $G e S b_{2} T e_{4}$, Sov. Phys. Crystallogr. 11, 400 (1966).

