SrFe₂S₄ Structure:

AB2C4D_tP16_125_a_cd_m_b-001

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 4*. In preparation.

https://aflow.org/p/DV64

 $https://aflow.org/p/AB2C4D_tP16_125_a_cd_m_b-001$

Prototype Fe_2S_4Sr

AFLOW prototype label AB2C4D_tP16_125_a_cd_m_b-001

ICSD 41720, 71096

Pearson symbol tP16

Space group number 125

Space group symbol P4/nbm

AFLOW prototype command aflow --proto=AB2C4D_tP16_125_a_cd_m_b-001

--params= $a, c/a, x_5, z_5$

- (Boller, 1978) (ICSD 41720) place this structure in space group $P\overline{4}b2$ #117. If we accept the coordinates of the sulfur atoms as correct, then $x_S = y_S$ and and the structure is actually in space group P4/nbm #125, as shown by (Cenzual, 1991) (ICSD 71096). We show this configuration here.
- The (2a) strontium site is 75% filled, while the (2b) site is 25% filled. If both sites are equally filled this system is in the SiU_3 ($D0_c$) structure with space group I4/mcm #140.
- We highlight the difference in the strontium sites by replacing the second strontium atom by calcium. This changes the AFLOW label of the system.

Simple Tetragonal primitive vectors

$$\mathbf{a_1} = a\,\hat{\mathbf{x}}$$

$$\mathbf{a_2} = a\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c \hat{\mathbf{z}}$$

Basis vectors

	Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1} =$	$rac{1}{4}\mathbf{a}_1+rac{1}{4}\mathbf{a}_2$	=	$rac{1}{4}a\hat{\mathbf{x}} + rac{1}{4}a\hat{\mathbf{y}}$	(2a)	Ca I
$\mathbf{B_2} =$	$\frac{3}{4}{f a}_1 + \frac{3}{4}{f a}_2$	=	$\frac{3}{4}a\hat{\mathbf{x}} + \frac{3}{4}a\hat{\mathbf{y}}$	(2a)	Ca I
$\mathbf{B_3} =$	$\frac{1}{4}\mathbf{a}_1 + \frac{1}{4}\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$\frac{1}{4}a\mathbf{\hat{x}} + \frac{1}{4}a\mathbf{\hat{y}} + \frac{1}{2}c\mathbf{\hat{z}}$	(2b)	Sr I
$\mathbf{B_4} =$	$\frac{3}{4}\mathbf{a}_1 + \frac{3}{4}\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$\frac{3}{4}a\mathbf{\hat{x}} + \frac{3}{4}a\mathbf{\hat{y}} + \frac{1}{2}c\mathbf{\hat{z}}$	(2b)	Sr I
${f B_5} =$	$rac{3}{4}\mathbf{a}_1+rac{1}{4}\mathbf{a}_2$	=	$rac{3}{4}a\mathbf{\hat{x}} + rac{1}{4}a\mathbf{\hat{y}}$	(2c)	Fe I
${f B_6} =$	$rac{1}{4}\mathbf{a}_1+rac{3}{4}\mathbf{a}_2$	=	$rac{1}{4}a\mathbf{\hat{x}}+rac{3}{4}a\mathbf{\hat{y}}$	(2c)	Fe I
$\mathbf{B_7} =$	$\frac{3}{4}\mathbf{a}_1 + \frac{1}{4}\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$\frac{3}{4}a\hat{\mathbf{x}} + \frac{1}{4}a\hat{\mathbf{y}} + \frac{1}{2}c\hat{\mathbf{z}}$	(2d)	Fe II
$\mathbf{B_8} =$	$rac{1}{4}{f a}_1 + rac{3}{4}{f a}_2 + rac{1}{2}{f a}_3$	=	$\frac{1}{4}a\hat{\mathbf{x}} + \frac{3}{4}a\hat{\mathbf{y}} + \frac{1}{2}c\hat{\mathbf{z}}$	(2d)	Fe II
$\mathbf{B_9} = $	$x_5 \mathbf{a}_1 - x_5 \mathbf{a}_2 + z_5 \mathbf{a}_3$	=	$ax_5\hat{\mathbf{x}} - ax_5\hat{\mathbf{y}} + cz_5\hat{\mathbf{z}}$	(8m)	SI
$B_{10} \ =$	$-\left(x_5 - \frac{1}{2}\right) \mathbf{a}_1 + \left(x_5 + \frac{1}{2}\right) \mathbf{a}_2 + z_5 \mathbf{a}_3$	=	$-a\left(x_{5}-\frac{1}{2}\right) \hat{\mathbf{x}}+a\left(x_{5}+\frac{1}{2}\right) \hat{\mathbf{y}}+cz_{5} \hat{\mathbf{z}}$	(8m)	SI
$\mathbf{B_{11}} \ =$	$\left(x_5 + \frac{1}{2}\right) \mathbf{a}_1 + x_5 \mathbf{a}_2 + z_5 \mathbf{a}_3$	=	$a\left(x_5+\frac{1}{2}\right)\mathbf{\hat{x}}+ax_5\mathbf{\hat{y}}+cz_5\mathbf{\hat{z}}$	(8m)	SI
$\mathbf{B_{12}} \ =$	$-x_5\mathbf{a}_1 - \left(x_5 - \frac{1}{2}\right)\mathbf{a}_2 + z_5\mathbf{a}_3$	=	$-ax_5\mathbf{\hat{x}}-a\left(x_5-\frac{1}{2}\right)\mathbf{\hat{y}}+cz_5\mathbf{\hat{z}}$	(8m)	SI
$\mathbf{B_{13}} \;\; = \;\;$	$-\left(x_5-\frac{1}{2}\right){f a}_1-x_5{f a}_2-z_5{f a}_3$	=	$-a\left(x_5-\frac{1}{2}\right)\hat{\mathbf{x}}-ax_5\hat{\mathbf{y}}-cz_5\hat{\mathbf{z}}$	(8m)	SI
$\mathbf{B_{14}} =$	$x_5 \mathbf{a}_1 + \left(x_5 + \frac{1}{2}\right) \mathbf{a}_2 - z_5 \mathbf{a}_3$	=	$ax_5\mathbf{\hat{x}} + a\left(x_5 + \frac{1}{2}\right)\mathbf{\hat{y}} - cz_5\mathbf{\hat{z}}$	(8m)	SI
$\mathbf{B_{15}} =$	$-x_5\mathbf{a}_1 + x_5\mathbf{a}_2 - z_5\mathbf{a}_3$	=	$-ax_5\mathbf{\hat{x}} + ax_5\mathbf{\hat{y}} - cz_5\mathbf{\hat{z}}$	(8m)	SI
$\mathbf{B_{16}} \ =$	$(x_5 + \frac{1}{2}) \mathbf{a}_1 - (x_5 - \frac{1}{2}) \mathbf{a}_2 - z_5 \mathbf{a}_3$	=	$a\left(x_{5}+\frac{1}{2}\right)\hat{\mathbf{x}}-a\left(x_{5}-\frac{1}{2}\right)\hat{\mathbf{y}}-cz_{5}\hat{\mathbf{z}}$	(8m)	SI

References

 $[1] \ \text{H. Boller}, \ \textit{Faserf\"{o}rmige Erdalkali-thioferrate}, \ \text{Monatsh. Chem. } \textbf{109}, \ 975-985 \ (1978), \ \text{doi:} 10.1007/\text{BF00907319}.$

Found in

[1] K. Cenzual, L. M. Gelato, M. Penzo, and E. Parthé, *Inorganic structure types with revised space groups. I*, Acta Crystallogr. Sect. B 47, 433–439 (1991), doi:10.1107/S0108768191000903.