Godlevskite (Ni_9S_8) Structure: A9B8_oC68_21_acehik2l_4l-001

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 4.* In preparation.

https://aflow.org/p/L6M4

 $https://aflow.org/p/A9B8_oC68_21_acehik2l_4l-001$

Prototype	$ m Ni_9S_8$
AFLOW prototype label	A9B8_oC68_21_acehik2l_4l-001
Mineral name	godlevskite
ICSD	63080
Pearson symbol	oC68
Space group number	21
Space group symbol	C222
AFLOW prototype command	$\begin{array}{l} \texttt{aflow} \ \texttt{proto=A9B8_oC68_21_acehik2l_4l-001} \\ \texttt{params}=a, b/a, c/a, x_3, y_4, z_5, z_6, x_7, y_7, z_7, x_8, y_8, z_8, x_9, y_9, z_9, x_{10}, y_{10}, z_{10}, x_{11}, y_{11}, z_{11}, x_{12}, y_{12}, z_{12} \end{array}$

^{• (}Fleet, 1987) says that the actual composition of the sample is $(Ni_{8.7}Fe_{0.3})S_8$ with no information about where the iron atoms are located, although the associated ICSD entry states that our Ni-II (2c) (Fleet's (2b)) site is half nickel and half iron.

Base-centered Orthorhombic primitive vectors

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{1}{2}b\,\hat{\mathbf{y}}$$
$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}b\,\hat{\mathbf{y}}$$
$$\mathbf{a_3} = c\,\hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	0	=	0	(2a)	Ni I
$\mathbf{B_2}$	=	$rac{1}{2}{f a}_1+rac{1}{2}{f a}_2+rac{1}{2}{f a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{1}{2}c\hat{\mathbf{z}}$	(2c)	Ni II
$\mathbf{B_3}$	=	$x_3 \mathbf{a}_1 + x_3 \mathbf{a}_2$	=	$ax_3\mathbf{\hat{x}}$	(4e)	Ni III
$\mathbf{B_4}$	=	$-x_3\mathbf{a}_1-x_3\mathbf{a}_2$	=	$-ax_3\mathbf{\hat{x}}$	(4e)	Ni III
\mathbf{B}_{5}	=	$-y_4 \mathbf{a}_1 + y_4 \mathbf{a}_2 + rac{1}{2} \mathbf{a}_3$	=	$by_4\mathbf{\hat{y}} + rac{1}{2}c\mathbf{\hat{z}}$	(4h)	Ni IV
$\mathbf{B_6}$	=	$y_4 {f a}_1 - y_4 {f a}_2 + rac{1}{2} {f a}_3$	=	$-by_4\mathbf{\hat{y}}+rac{1}{2}c\mathbf{\hat{z}}$	(4h)	Ni IV
$\mathbf{B_7}$	=	$z_5{f a}_3$	=	$cz_5\mathbf{\hat{z}}$	(4i)	Ni V
$\mathbf{B_8}$	=	$-z_5{f a}_3$	=	$-cz_5\mathbf{\hat{z}}$	(4i)	Ni V
\mathbf{B}_{9}	=	$rac{1}{2}\mathbf{a}_2+z_6\mathbf{a}_3$	=	$rac{1}{4}a\mathbf{\hat{x}}+rac{1}{4}b\mathbf{\hat{y}}+cz_{6}\mathbf{\hat{z}}$	(4k)	Ni VI
$\mathbf{B_{10}}$	=	$rac{1}{2} \mathbf{a}_1 - z_6 \mathbf{a}_3$	=	$rac{1}{4}a\mathbf{\hat{x}}-rac{1}{4}b\mathbf{\hat{y}}-cz_{6}\mathbf{\hat{z}}$	(4k)	Ni VI
B ₁₁	=	$(x_7-y_7) \; {f a}_1 + (x_7+y_7) \; {f a}_2 + z_7 {f a}_3$	=	$ax_7 \mathbf{\hat{x}} + by_7 \mathbf{\hat{y}} + cz_7 \mathbf{\hat{z}}$	(8l)	Ni VII
B ₁₂	=	$-(x_7-y_7) \mathbf{a}_1 - (x_7+y_7) \mathbf{a}_2 + z_7 \mathbf{a}_3$	=	$-ax_7\mathbf{\hat{x}} - by_7\mathbf{\hat{y}} + cz_7\mathbf{\hat{z}}$	(81)	Ni VII
B ₁₃	=	$-(x_7+y_7) \mathbf{a}_1 - (x_7-y_7) \mathbf{a}_2 - z_7 \mathbf{a}_3$	=	$-ax_7\mathbf{\hat{x}}+by_7\mathbf{\hat{y}}-cz_7\mathbf{\hat{z}}$	(81)	Ni VII
B ₁₄	=	$(x_7+y_7) {f a}_1 + (x_7-y_7) {f a}_2 - z_7 {f a}_3$	=	$ax_7\mathbf{\hat{x}} - by_7\mathbf{\hat{y}} - cz_7\mathbf{\hat{z}}$	(81)	Ni VII
B ₁₅	=	$(x_8 - y_8) \mathbf{a}_1 + (x_8 + y_8) \mathbf{a}_2 + z_8 \mathbf{a}_3$	=	$ax_8\hat{\mathbf{x}} + by_8\hat{\mathbf{y}} + cz_8\hat{\mathbf{z}}$	(8l)	Ni VIII
B ₁₆	=	$-(x_8-y_8) \mathbf{a}_1 - (x_8+y_8) \mathbf{a}_2 + z_8 \mathbf{a}_3$	=	$-ax_8\mathbf{\hat{x}} - by_8\mathbf{\hat{y}} + cz_8\mathbf{\hat{z}}$	(8l)	Ni VIII
B ₁₇	=	$-(x_8+y_8) \mathbf{a}_1 - (x_8-y_8) \mathbf{a}_2 - z_8 \mathbf{a}_3$	=	$-ax_8\mathbf{\hat{x}}+by_8\mathbf{\hat{y}}-cz_8\mathbf{\hat{z}}$	(8l)	Ni VIII
B ₁₈	=	$(x_8+y_8) \mathbf{a}_1 + (x_8-y_8) \mathbf{a}_2 - z_8 \mathbf{a}_3$	=	$ax_8\mathbf{\hat{x}} - by_8\mathbf{\hat{y}} - cz_8\mathbf{\hat{z}}$	(8l)	Ni VIII
B ₁₉	=	$egin{array}{lll} (x_9-y_9) {f a}_1 + (x_9+y_9) {f a}_2 + \ z_9 {f a}_3 \end{array}$	=	$ax_9\mathbf{\hat{x}} + by_9\mathbf{\hat{y}} + cz_9\mathbf{\hat{z}}$	(8l)	S I
B ₂₀	=	$-(x_9-y_9) \mathbf{a}_1 - (x_9+y_9) \mathbf{a}_2 + z_9 \mathbf{a}_3$	=	$-ax_9\mathbf{\hat{x}} - by_9\mathbf{\hat{y}} + cz_9\mathbf{\hat{z}}$	(8l)	SI
B ₂₁	=	$-(x_9+y_9) \mathbf{a}_1 - (x_9-y_9) \mathbf{a}_2 - z_9 \mathbf{a}_3$	=	$-ax_9\mathbf{\hat{x}}+by_9\mathbf{\hat{y}}-cz_9\mathbf{\hat{z}}$	(8l)	S I

B ₂₂	=	$(x_9 + y_9) \mathbf{a}_1 + (x_9 - y_9) \mathbf{a}_2 - z_9 \mathbf{a}_3$	=	$ax_9\mathbf{\hat{x}} - by_9\mathbf{\hat{y}} - cz_9\mathbf{\hat{z}}$	(81)	S I
B ₂₃	=	$(x_{10} - y_{10}) \mathbf{a}_1 + (x_{10} + y_{10}) \mathbf{a}_2 + z_{10} \mathbf{a}_3$	=	$ax_{10}\mathbf{\hat{x}} + by_{10}\mathbf{\hat{y}} + cz_{10}\mathbf{\hat{z}}$	(81)	S II
B ₂₄	=	$\begin{array}{c} -\left(x_{10}-y_{10}\right)\mathbf{a}_{1}-\\ \left(x_{10}+y_{10}\right)\mathbf{a}_{2}+z_{10}\mathbf{a}_{3}\end{array}$	=	$-ax_{10}\hat{\mathbf{x}} - by_{10}\hat{\mathbf{y}} + cz_{10}\hat{\mathbf{z}}$	(81)	S II
B_{25}	=	$\begin{array}{c} -\left(x_{10}+y_{10}\right){\bf a}_1-\\ \left(x_{10}-y_{10}\right){\bf a}_2-z_{10}{\bf a}_3\end{array}$	=	$-ax_{10}\mathbf{\hat{x}}+by_{10}\mathbf{\hat{y}}-cz_{10}\mathbf{\hat{z}}$	(81)	S II
B ₂₆	=	$egin{array}{lll} (x_{10}+y_{10}) {f a}_1 + \ (x_{10}-y_{10}) {f a}_2 - z_{10} {f a}_3 \end{array}$	=	$ax_{10}\mathbf{\hat{x}} - by_{10}\mathbf{\hat{y}} - cz_{10}\mathbf{\hat{z}}$	(81)	S II
B ₂₇	=	$egin{array}{lll} (x_{11}-y_{11}) {f a}_1 + \ (x_{11}+y_{11}) {f a}_2 + z_{11} {f a}_3 \end{array}$	=	$ax_{11}\mathbf{\hat{x}} + by_{11}\mathbf{\hat{y}} + cz_{11}\mathbf{\hat{z}}$	(81)	S III
B ₂₈	=	$egin{array}{lll} - (x_{11} - y_{11}) \; {f a}_1 - \ (x_{11} + y_{11}) \; {f a}_2 + z_{11} {f a}_3 \end{array}$	=	$-ax_{11}\hat{\mathbf{x}}-by_{11}\hat{\mathbf{y}}+cz_{11}\hat{\mathbf{z}}$	(81)	S III
B ₂₉	=	$egin{array}{lll} - \left(x_{11} + y_{11} ight) {f a}_1 - \ \left(x_{11} - y_{11} ight) {f a}_2 - z_{11} {f a}_3 \end{array}$	=	$-ax_{11}\mathbf{\hat{x}}+by_{11}\mathbf{\hat{y}}-cz_{11}\mathbf{\hat{z}}$	(81)	S III
B ₃₀	=	$egin{array}{lll} (x_{11}+y_{11}) {f a}_1 + \ (x_{11}-y_{11}) {f a}_2 - z_{11} {f a}_3 \end{array}$	=	$ax_{11}\mathbf{\hat{x}} - by_{11}\mathbf{\hat{y}} - cz_{11}\mathbf{\hat{z}}$	(81)	S III
B ₃₁	=	$egin{array}{lll} (x_{12}-y_{12}) {f a}_1 + \ (x_{12}+y_{12}) {f a}_2 + z_{12} {f a}_3 \end{array}$	=	$ax_{12}\mathbf{\hat{x}} + by_{12}\mathbf{\hat{y}} + cz_{12}\mathbf{\hat{z}}$	(81)	S IV
B ₃₂	=	$egin{array}{lll} - (x_{12} - y_{12}) \; {f a}_1 - \ (x_{12} + y_{12}) \; {f a}_2 + z_{12} {f a}_3 \end{array}$	=	$-ax_{12}\mathbf{\hat{x}} - by_{12}\mathbf{\hat{y}} + cz_{12}\mathbf{\hat{z}}$	(81)	S IV
B ₃₃	=	$egin{array}{llllllllllllllllllllllllllllllllllll$	=	$-ax_{12}\mathbf{\hat{x}}+by_{12}\mathbf{\hat{y}}-cz_{12}\mathbf{\hat{z}}$	(81)	S IV
B_{34}	=	$(x_{12} + y_{12}) \mathbf{a}_1 + (x_{12} - y_{12}) \mathbf{a}_2 - z_{12} \mathbf{a}_3$	=	$ax_{12}\mathbf{\hat{x}} - by_{12}\mathbf{\hat{y}} - cz_{12}\mathbf{\hat{z}}$	(81)	S IV

References

[1] M. E. Fleet, Structure of Godlevskite, Ni_9S_8 , Acta Crystallogr. Sect. C **43**, 2255–2257 (1987), doi:10.1107/S0108270187088176.

Found in

 P. Villars, H. Okamoto, and K. Cenzual, eds., ASM Alloy Phase Diagram Database (ASM International, 2018), chap. Nickel-Sulfur Binary Phase Diagram (1990 Singleton M.). Copyright ©2006-2018 ASM International.