H_3S (60 GPa) Structure: A3B_oC64_66_gi2lm_2l-001

This structure originally had the label A3B_oC64_66_gi2lm_21. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 2*, Comput. Mater. Sci. **161**, S1 (2019). doi: 10.1016/j.commatsci.2018.10.043

https://aflow.org/p/DQEU

https://aflow.org/p/A3B_oC64_66_gi2lm_2l-001

Prototype	H_3S		
AFLOW prototype label	A3B_oC64_66_gi2lm_2l-001		
ICSD	291500		
Pearson symbol	oC64		
Space group number	66		
Space group symbol	Cccm		
AFLOW prototype command	aflowproto=A3B_oC64_66_gi2lm_21-001 params= $a, b/a, c/a, x_1, z_2, x_3, y_3, x_4, y_4, x_5, y_5, x_6, y_6, x_7, y_7, z_7$		

• This structure was found by first-principles electronic structure calculations and is predicted to be the stable structure of H_3S for pressures between 40 and 90 GPa. The data presented here was computed at 60 GPa.

• (Hicks, 2019) had a transcription error in the position of the S-I atom. We have corrected that here.

Base-centered Orthorhombic primitive vectors

a3

a1

		Lattice		Cartesian	Wyckoff	Atom
D	_	$m = 2 + m = 2 + \frac{1}{2} = 2$	_	$\frac{1}{2}$	(Sec)	туре пт
\mathbf{D}_1	_	$x_1 \mathbf{a}_1 + x_1 \mathbf{a}_2 + \frac{1}{4} \mathbf{a}_3$	_	$a a_1 \mathbf{x} + \frac{1}{4} c \mathbf{z}$	(8g)	11 I TT T
B_2	=	$-x_1 \mathbf{a}_1 - x_1 \mathbf{a}_2 + \frac{1}{4} \mathbf{a}_3$	=	$-ax_1 \mathbf{x} + \frac{1}{4}c \mathbf{z}$	(8g)	
B_3	=	$-x_1 \mathbf{a}_1 - x_1 \mathbf{a}_2 + rac{3}{4} \mathbf{a}_3$	=	$-ax_1\hat{\mathbf{x}}+\frac{3}{4}c\hat{\mathbf{z}}$	(8g)	ΗI
B_4	=	$x_1 \mathbf{a}_1 + x_1 \mathbf{a}_2 + \frac{3}{4} \mathbf{a}_3$	=	$ax_1\mathbf{\hat{x}}+rac{3}{4}c\mathbf{\hat{z}}$	(8g)	ΗI
B_5	=	$z_2 {f a}_3$	=	$cz_2\mathbf{\hat{z}}$	(8i)	ΗII
$\mathbf{B_6}$	=	$-\left(z_2-rac{1}{2} ight){f a}_3$	=	$-c\left(z_2-rac{1}{2} ight)\mathbf{\hat{z}}$	(8i)	ΗII
B_7	=	$-z_2\mathbf{a}_3$	=	$-cz_2\mathbf{\hat{z}}$	(8i)	ΗII
$\mathbf{B_8}$	=	$\left(z_2+rac{1}{2} ight){f a}_3$	=	$c\left(z_2+rac{1}{2} ight) {f \hat{z}}$	(8i)	ΗII
\mathbf{B}_{9}	=	$(x_3 - y_3) \mathbf{a}_1 + (x_3 + y_3) \mathbf{a}_2$	=	$ax_3\mathbf{\hat{x}}+by_3\mathbf{\hat{y}}$	(81)	H III
$\mathbf{B_{10}}$	=	$-(x_3-y_3) \mathbf{a}_1 - (x_3+y_3) \mathbf{a}_2$	=	$-ax_3\mathbf{\hat{x}}-by_3\mathbf{\hat{y}}$	(81)	H III
B ₁₁	=	$\begin{array}{c} -\left(x_{3}+y_{3}\right) \mathbf{a}_{1}-\left(x_{3}-y_{3}\right) \mathbf{a}_{2}+\\ \frac{1}{2} \mathbf{a}_{3}\end{array}$	=	$-ax_3\mathbf{\hat{x}}+by_3\mathbf{\hat{y}}+\frac{1}{2}c\mathbf{\hat{z}}$	(81)	H III
B_{12}	=	$(x_3+y_3) \mathbf{a}_1 + (x_3-y_3) \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$ax_3\mathbf{\hat{x}} - by_3\mathbf{\hat{y}} + \frac{1}{2}c\mathbf{\hat{z}}$	(81)	H III
B_{13}	=	$(x_4 - y_4) \mathbf{a}_1 + (x_4 + y_4) \mathbf{a}_2$	=	$ax_4\mathbf{\hat{x}} + by_4\mathbf{\hat{y}}$	(81)	H IV
B_{14}	=	$-(x_4-y_4) \mathbf{a}_1 - (x_4+y_4) \mathbf{a}_2$	=	$-ax_4\mathbf{\hat{x}} - by_4\mathbf{\hat{y}}$	(81)	H IV
B ₁₅	=	$-(x_4+y_4) \mathbf{a}_1 - (x_4-y_4) \mathbf{a}_2 + rac{1}{2} \mathbf{a}_3$	=	$-ax_4\mathbf{\hat{x}} + by_4\mathbf{\hat{y}} + \frac{1}{2}c\mathbf{\hat{z}}$	(81)	H IV
$\mathbf{B_{16}}$	=	$(x_4+y_4) \mathbf{a}_1 + (x_4-y_4) \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$ax_4\mathbf{\hat{x}} - by_4\mathbf{\hat{y}} + \frac{1}{2}c\mathbf{\hat{z}}$	(81)	H IV
B_{17}	=	$(x_5 - y_5) \mathbf{a}_1 + (x_5 + y_5) \mathbf{a}_2$	=	$ax_5\mathbf{\hat{x}} + by_5\mathbf{\hat{y}}$	(81)	S I
B_{18}	=	$-(x_5-y_5) \mathbf{a}_1 - (x_5+y_5) \mathbf{a}_2$	=	$-ax_5\mathbf{\hat{x}}-by_5\mathbf{\hat{y}}$	(81)	S I
B ₁₉	=	$\begin{array}{c} -\left(x_{5}+y_{5}\right) \mathbf{a}_{1}-\left(x_{5}-y_{5}\right) \mathbf{a}_{2}+\\ \frac{1}{2} \mathbf{a}_{3}\end{array}$	=	$-ax_5\hat{\mathbf{x}}+by_5\hat{\mathbf{y}}+\frac{1}{2}c\hat{\mathbf{z}}$	(81)	S I
$\mathbf{B_{20}}$	=	$(x_5+y_5) \mathbf{a}_1 + (x_5-y_5) \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$ax_5\mathbf{\hat{x}} - by_5\mathbf{\hat{y}} + \frac{1}{2}c\mathbf{\hat{z}}$	(81)	S I
$\mathbf{B_{21}}$	=	$(x_6 - y_6) \ \mathbf{a}_1 + (x_6 + y_6) \ \mathbf{a}_2$	=	$ax_6\mathbf{\hat{x}} + by_6\mathbf{\hat{y}}$	(81)	S II
\mathbf{B}_{22}	=	$-(x_6-y_6) \mathbf{a}_1 - (x_6+y_6) \mathbf{a}_2$	=	$-ax_6\mathbf{\hat{x}} - by_6\mathbf{\hat{y}}$	(81)	S II
B ₂₃	=	$-(x_6+y_6) \mathbf{a}_1 - (x_6-y_6) \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$-ax_6\mathbf{\hat{x}} + by_6\mathbf{\hat{y}} + \frac{1}{2}c\mathbf{\hat{z}}$	(81)	S II
$\mathbf{B_{24}}$	=	$(x_6 + y_6) \mathbf{a}_1 + (x_6 - y_6) \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$ax_6\mathbf{\hat{x}} - by_6\mathbf{\hat{y}} + \frac{1}{2}c\mathbf{\hat{z}}$	(8l)	S II
B ₂₅	=	$(x_7 - y_7) \ \mathbf{a}_1 + (x_7 + y_7) \ \mathbf{a}_2 + z_7 \ \mathbf{a}_3$	=	$ax_7\mathbf{\hat{x}} + by_7\mathbf{\hat{y}} + cz_7\mathbf{\hat{z}}$	(16m)	ΗV

$$\begin{array}{rcl}
\mathbf{B_{26}} &=& -(x_7 - y_7) \, \mathbf{a}_1 - (x_7 + y_7) \, \mathbf{a}_2 + &= & -ax_7 \, \hat{\mathbf{x}} - by_7 \, \hat{\mathbf{y}} + cz_7 \, \hat{\mathbf{z}} & (16m) & \mathrm{H} \, \mathrm{V} \\ & & z_7 \, \mathbf{a}_3 \\
\end{array}$$

$$\begin{array}{rcl}
\mathbf{B_{27}} &=& -(x_7 + y_7) \, \mathbf{a}_1 - (x_7 - y_7) \, \mathbf{a}_2 - &= & -ax_7 \, \hat{\mathbf{x}} + by_7 \, \hat{\mathbf{y}} - c \left(z_7 - \frac{1}{2}\right) \, \hat{\mathbf{z}} & (16m) & \mathrm{H} \, \mathrm{V} \\ & & \left(z_7 - \frac{1}{2}\right) \, \mathbf{a}_3 \\
\end{array}$$

$$\begin{array}{rcl}
\mathbf{B_{28}} &=& (x_7 + y_7) \, \mathbf{a}_1 + (x_7 - y_7) \, \mathbf{a}_2 - &= & ax_7 \, \hat{\mathbf{x}} - by_7 \, \hat{\mathbf{y}} - c \left(z_7 - \frac{1}{2}\right) \, \hat{\mathbf{z}} & (16m) & \mathrm{H} \, \mathrm{V} \\ & & \left(z_7 - \frac{1}{2}\right) \, \mathbf{a}_3 \\
\end{array}$$

$$\begin{array}{rcl}
\mathbf{B_{29}} &=& -(x_7 - y_7) \, \mathbf{a}_1 - (x_7 + y_7) \, \mathbf{a}_2 - &= & -ax_7 \, \hat{\mathbf{x}} - by_7 \, \hat{\mathbf{y}} - cz_7 \, \hat{\mathbf{z}} & (16m) & \mathrm{H} \, \mathrm{V} \\ & & z_7 \, \mathbf{a}_3 \\
\end{array}$$

$$\begin{array}{rcl}
\mathbf{B_{30}} &=& (x_7 - y_7) \, \mathbf{a}_1 + (x_7 + y_7) \, \mathbf{a}_2 - &= & ax_7 \, \hat{\mathbf{x}} + by_7 \, \hat{\mathbf{y}} - cz_7 \, \hat{\mathbf{z}} & (16m) & \mathrm{H} \, \mathrm{V} \\ & & z_7 \, \mathbf{a}_3 \\
\end{array}$$

$$\begin{array}{rcl}
\mathbf{B_{31}} &=& (x_7 + y_7) \, \mathbf{a}_1 + (x_7 - y_7) \, \mathbf{a}_2 + &= & ax_7 \, \hat{\mathbf{x}} - by_7 \, \hat{\mathbf{y}} + c \left(z_7 + \frac{1}{2}\right) \, \hat{\mathbf{z}} & (16m) & \mathrm{H} \, \mathrm{V} \\ & & (z_7 + \frac{1}{2}) \, \mathbf{a}_3 \\
\end{array}$$

$$\begin{array}{rcl}
\mathbf{B_{32}} &=& -(x_7 + y_7) \, \mathbf{a}_1 - (x_7 - y_7) \, \mathbf{a}_2 + &= & -ax_7 \, \hat{\mathbf{x}} + by_7 \, \hat{\mathbf{y}} + c \left(z_7 + \frac{1}{2}\right) \, \hat{\mathbf{z}} & (16m) & \mathrm{H} \, \mathrm{V} \\ & & (z_7 + \frac{1}{2}) \, \mathbf{a}_3 \\
\end{array}$$

References

- D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui, Pressure-induced metallization of dense (H₂S)₂H₂ with high-T_c superconductivity 4, 698 (2014), doi:10.1038/srep06968.
- [2] D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comput. Mater. Sci. 161, S1–S1011 (2019), doi:10.1016/j.commatsci.2018.10.043.