Nb₃O₇F Structure: # A3B8_oC22_65_bg_ac2gh-001 This structure originally had the label A3B8_oC22_65_ag_bd2gh. Calls to that address will be redirected here. Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 3*, Comput. Mater. Sci. **199**, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450. https://aflow.org/p/YUGM https://aflow.org/p/A3B8_oC22_65_bg_ac2gh-001 Prototype FNb_3O_7 AFLOW prototype label A3B8_oC22_65_bg_ac2gh-001 ICSD 28461 Pearson symbol oC22 Space group number 65 Space group symbol Cmmm AFLOW prototype command aflow --proto=A3B8_oC22_65_bg_ac2gh-001 --params= $a,b/a,c/a,x_4,x_5,x_6,x_7$ ### Other compounds with this structure $Nb_3O_7(OH)$ • (Andersson, 1964) was not able to distinguish between oxygen and fluorine, so it is assumed that the fluorine atoms (or OH radicals) are distributed randomly on the oxygen sites. We follow Andersson and label all the sites as oxygen. #### Base-centered Orthorhombic primitive vectors $$\mathbf{a_1} \quad = \quad \frac{1}{2}a\,\mathbf{\hat{x}} - \frac{1}{2}b\,\mathbf{\hat{y}}$$ $$\mathbf{a_2} = \frac{1}{2}a\,\mathbf{\hat{x}} + \frac{1}{2}b\,\mathbf{\hat{y}}$$ $$\mathbf{a_3} = c \hat{\mathbf{z}}$$ Basis vectors | | | Lattice coordinates | | Cartesian coordinates | Wyckoff position | Atom
type | |-------------------|---|---|---|---|------------------|--------------| | $\mathbf{B_1}$ | = | 0 | = | 0 | (2a) | ΟI | | $\mathbf{B_2}$ | = | $ rac{1}{2}\mathbf{a}_1+ rac{1}{2}\mathbf{a}_2$ | = | $ rac{1}{2}a\mathbf{\hat{x}}$ | (2b) | Nb I | | B_3 | = | $\frac{1}{2}\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$ | = | $ rac{1}{2}a\mathbf{\hat{x}} + rac{1}{2}c\mathbf{\hat{z}}$ | (2c) | O II | | B_4 | = | $x_4 \mathbf{a}_1 + x_4 \mathbf{a}_2$ | = | $ax_4\mathbf{\hat{x}}$ | (4g) | Nb II | | B_5 | = | $-x_4 \mathbf{a}_1 - x_4 \mathbf{a}_2$ | = | $-ax_4\mathbf{\hat{x}}$ | (4g) | Nb II | | ${f B_6}$ | = | $x_5 \mathbf{a}_1 + x_5 \mathbf{a}_2$ | = | $ax_5\mathbf{\hat{x}}$ | (4g) | O III | | $\mathbf{B_7}$ | = | $-x_5 \mathbf{a}_1 - x_5 \mathbf{a}_2$ | = | $-ax_{5}\hat{\mathbf{x}}$ | (4g) | O III | | ${f B_8}$ | = | $x_6 \mathbf{a}_1 + x_6 \mathbf{a}_2$ | = | $ax_6\mathbf{\hat{x}}$ | (4g) | O IV | | ${f B_9}$ | = | $-x_6 \mathbf{a}_1 - x_6 \mathbf{a}_2$ | = | $-ax_6\mathbf{\hat{x}}$ | (4g) | O IV | | ${\bf B_{10}}$ | = | $x_7 \mathbf{a}_1 + x_7 \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$ | = | $ax_7\hat{\mathbf{x}} + \frac{1}{2}c\hat{\mathbf{z}}$ | (4h) | o v | | $\mathbf{B_{11}}$ | = | $-x_7\mathbf{a}_1 - x_7\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$ | = | $-ax_7\mathbf{\hat{x}} + \frac{1}{2}c\mathbf{\hat{z}}$ | (4h) | o v | ### References ^[1] S. Andersson, The Crystal Structure of Nb_3O_7F , Acta Chem. Scand. 18, 2339–2344 (1964), doi:10.3891/acta.chem.scand.18-2339.