$\mathrm{Nb}_{3} \mathrm{O}_{7} \mathrm{~F}$ Structure:

A3B8_oC22_65_bg_ac2gh-001

This structure originally had the label A3B8_oC22_65_ag_bd2gh. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comput. Mater. Sci. 199, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

Prototype
AFLOW prototype label
ICSD
Pearson symbol
oC22
Space group number
65

Space group symbol
Cmmm

AFLOW prototype command

```
aflow --proto=A3B8_oC22_65_bg_ac2gh-001
```

 --params \(=a, b / a, c / a, x_{4}, x_{5}, x_{6}, x_{7}\)
 Other compounds with this structure
$\mathrm{Nb}_{3} \mathrm{O}_{7}(\mathrm{OH})$

- (Andersson, 1964) was not able to distinguish between oxygen and fluorine, so it is assumed that the fluorine atoms (or OH radicals) are distributed randomly on the oxygen sites. We follow Andersson and label all the sites as oxygen.

Base-centered Orthorhombic primitive vectors

$$
\begin{aligned}
& \mathbf{a}_{\mathbf{1}}=\frac{1}{2} a \hat{\mathbf{x}}-\frac{1}{2} b \hat{\mathbf{y}} \\
& \mathbf{a}_{\mathbf{2}}=\frac{1}{2} a \hat{\mathbf{x}}+\frac{1}{2} b \hat{\mathbf{y}} \\
& \mathbf{a}_{\mathbf{3}}=
\end{aligned}
$$

Basis vectors

| Lattice | Cartesian | Wyckoff |
| :---: | :---: | :---: | | Atom |
| :---: |
| coordinates |\quad position | cordinates |
| :---: |

$\mathrm{B}_{1}=$	0	$=$
$\mathrm{B}_{2}=$	$\frac{1}{2} \mathbf{a}_{1}+\frac{1}{2} \mathbf{a}_{2}$	$=$
B_{3}	$\frac{1}{2} \mathbf{a}_{1}+\frac{1}{2} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$	$=$
B_{4}	$x_{4} \mathbf{a}_{1}+x_{4} \mathbf{a}_{2}$	$=$
B_{5}	$-x_{4} \mathbf{a}_{1}-x_{4} \mathbf{a}_{2}$	$=$
B_{6}	$x_{5} \mathbf{a}_{1}+x_{5} \mathbf{a}_{2}$	$=$
B_{7}	$-x_{5} \mathbf{a}_{1}-x_{5} \mathbf{a}_{2}$	$=$
$\mathbf{B}_{8}=$	$x_{6} \mathbf{a}_{1}+x_{6} \mathbf{a}_{2}$	$=$
$\mathrm{B}_{9}=$	$-x_{6} \mathbf{a}_{1}-x_{6} \mathbf{a}_{2}$	$=$
$\mathbf{B}_{10}=$	$x_{7} \mathbf{a}_{1}+x_{7} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$	$=$
$\mathbf{B}_{11}=$	$-x_{7} \mathbf{a}_{1}-x_{7} \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$	$=$

References

[1] S. Andersson, The Crystal Structure of $\mathrm{Nb}_{3} \mathrm{O}_{7} F$, Acta Chem. Scand. 18, 2339-2344 (1964), doi:10.3891/acta.chem.scand.182339 .

