MnF₂ Structure:

A2B_tP12_111_2n_bce-001

This structure originally had the label A2B_tP12_111_2n_adf. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 2*, Comput. Mater. Sci. **161**, S1 (2019). doi: 10.1016/j.commatsci.2018.10.043

https://aflow.org/p/YKCX

https://aflow.org/p/A2B_tP12_111_2n_bce-001

Prototype F_2Mn

AFLOW prototype label A2B_tP12_111_2n_bce-001

ICSD12167Pearson symboltP12Space group number111Space group symbol $P\overline{4}2m$

AFLOW prototype command aflow --proto=A2B_tP12_111_2n_bce-001

--params= $a, c/a, x_4, z_4, x_5, z_5$

- This is the high pressure phase of MnF_2 , with data taken at 200°C and 35 kbar. At standard temperature and pressure MnF_2 is in the rutile (C4) structure.
- (Yagi, 1979) consistently refers to space group $P\overline{4}2m$ as "#113," but it is actually #111, and the Wyckoff positions are consistent with $P\overline{4}2m$ #111.

Simple Tetragonal primitive vectors

$$\mathbf{a_1} = a\,\hat{\mathbf{x}}$$
$$\mathbf{a_2} = a\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c \hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
${f B_1}$	=	$\frac{1}{2}\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{1}{2}a\hat{\mathbf{y}} + \frac{1}{2}c\hat{\mathbf{z}}$	(1b)	${ m Mn~I}$
$\mathbf{B_2}$	=	$rac{1}{2}\mathbf{a}_3$	=	$rac{1}{2}c\mathbf{\hat{z}}$	(1c)	${ m Mn~II}$
${f B_3}$	=	$rac{1}{2}\mathbf{a}_1$	=	$\frac{1}{2}a\mathbf{\hat{x}}$	(2e)	Mn III
${f B_4}$	=	$rac{1}{2}\mathbf{a}_2$	=	$rac{1}{2}a\mathbf{\hat{y}}$	(2e)	Mn III
${f B_5}$	=	$x_4 \mathbf{a}_1 + x_4 \mathbf{a}_2 + z_4 \mathbf{a}_3$	=	$ax_4\mathbf{\hat{x}} + ax_4\mathbf{\hat{y}} + cz_4\mathbf{\hat{z}}$	(4n)	FΙ
${f B_6}$	=	$-x_4\mathbf{a}_1 - x_4\mathbf{a}_2 + z_4\mathbf{a}_3$	=	$-ax_4\mathbf{\hat{x}} - ax_4\mathbf{\hat{y}} + cz_4\mathbf{\hat{z}}$	(4n)	FΙ
$\mathbf{B_7}$	=	$x_4 \mathbf{a}_1 - x_4 \mathbf{a}_2 - z_4 \mathbf{a}_3$	=	$ax_4\mathbf{\hat{x}} - ax_4\mathbf{\hat{y}} - cz_4\mathbf{\hat{z}}$	(4n)	FΙ
${f B_8}$	=	$-x_4\mathbf{a}_1 + x_4\mathbf{a}_2 - z_4\mathbf{a}_3$	=	$-ax_4\mathbf{\hat{x}} + ax_4\mathbf{\hat{y}} - cz_4\mathbf{\hat{z}}$	(4n)	FΙ
${f B_9}$	=	$x_5 \mathbf{a}_1 + x_5 \mathbf{a}_2 + z_5 \mathbf{a}_3$	=	$ax_5\mathbf{\hat{x}} + ax_5\mathbf{\hat{y}} + cz_5\mathbf{\hat{z}}$	(4n)	F II
B_{10}	=	$-x_5\mathbf{a}_1 - x_5\mathbf{a}_2 + z_5\mathbf{a}_3$	=	$-ax_5\mathbf{\hat{x}} - ax_5\mathbf{\hat{y}} + cz_5\mathbf{\hat{z}}$	(4n)	FII
B_{11}	=	$x_5 \mathbf{a}_1 - x_5 \mathbf{a}_2 - z_5 \mathbf{a}_3$	=	$ax_5\mathbf{\hat{x}} - ax_5\mathbf{\hat{y}} - cz_5\mathbf{\hat{z}}$	(4n)	F II
$\mathbf{B_{12}}$	=	$-x_5\mathbf{a}_1 + x_5\mathbf{a}_2 - z_5\mathbf{a}_3$	=	$-ax_5\mathbf{\hat{x}} + ax_5\mathbf{\hat{y}} - cz_5\mathbf{\hat{z}}$	(4n)	F II

References

[1] T. Yagi, Polymorphism in MnF_2 (rutile type) at high pressures, J. Geophys. Res. **84**, 1113–1115 (1979), doi:10.1029/JB084iB03p01113.

Found in

[1] P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.