GeAs₂ Structure:

A2B_oP24_55_2g2h_gh-001

This structure originally had the label A2B_oP24_55_2g2h_gh. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 2*, Comput. Mater. Sci. **161**, S1 (2019). doi: 10.1016/j.commatsci.2018.10.043

https://aflow.org/p/X52Z

https://aflow.org/p/A2B_oP24_55_2g2h_gh-001

Prototype As_2Ge

AFLOW prototype label A2B_oP24_55_2g2h_gh-001

ICSD 23872
Pearson symbol oP24
Space group number 55

Space group symbol Pbam

AFLOW prototype command aflow --proto=A2B_oP24_55_2g2h_gh-001

 $--\mathtt{params} = a, b/a, c/a, x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4, x_5, y_5, x_6, y_6$

Other compounds with this structure

 $SiAs_2$, SiP_2

• The original report of this structure (Hicks, 2019) referenced a paper that did not contain the details of the structure. We now reference the correct structure.

Simple Orthorhombic primitive vectors

$$\mathbf{a_1} = a\,\hat{\mathbf{x}}$$

$$\mathbf{a_2} = b\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c \, \hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
B_1	=	$x_1 \mathbf{a}_1 + y_1 \mathbf{a}_2$	=	$ax_1 \hat{\mathbf{x}} + by_1 \hat{\mathbf{y}}$	(4g)	As I
$\mathbf{B_2}$	=	$-x_1 \mathbf{a}_1 - y_1 \mathbf{a}_2$	=	$-ax_1\hat{\mathbf{x}}-by_1\hat{\mathbf{y}}$	(4g)	As I
B_3	=	$-\left(x_1-\frac{1}{2}\right) \mathbf{a}_1+\left(y_1+\frac{1}{2}\right) \mathbf{a}_2$	=	$-a\left(x_{1}-\frac{1}{2}\right) \hat{\mathbf{x}}+b\left(y_{1}+\frac{1}{2}\right) \hat{\mathbf{y}}$	(4g)	As I
${f B_4}$	=	$(x_1 + \frac{1}{2}) \mathbf{a}_1 - (y_1 - \frac{1}{2}) \mathbf{a}_2$	=	$a\left(x_1+\frac{1}{2}\right)\hat{\mathbf{x}}-b\left(y_1-\frac{1}{2}\right)\hat{\mathbf{y}}$	(4g)	As I
B_5	=	$x_2 \mathbf{a}_1 + y_2 \mathbf{a}_2$	=	$ax_2 \hat{\mathbf{x}} + by_2 \hat{\mathbf{y}}$	(4g)	As II
B_6	=	$-x_2 \mathbf{a}_1 - y_2 \mathbf{a}_2$	=	$-ax_2\mathbf{\hat{x}}-by_2\mathbf{\hat{y}}$	(4g)	As II
$\mathbf{B_7}$	=	$-\left(x_2-\frac{1}{2}\right) \mathbf{a}_1 + \left(y_2+\frac{1}{2}\right) \mathbf{a}_2$	=	$-a\left(x_2 - \frac{1}{2}\right) \hat{\mathbf{x}} + b\left(y_2 + \frac{1}{2}\right) \hat{\mathbf{y}}$	(4g)	As II
B_8	=	$\left(x_2 + \frac{1}{2}\right) \mathbf{a}_1 - \left(y_2 - \frac{1}{2}\right) \mathbf{a}_2$	=	$a\left(x_2 + \frac{1}{2}\right) \hat{\mathbf{x}} - b\left(y_2 - \frac{1}{2}\right) \hat{\mathbf{y}}$	(4g)	As II
$\mathbf{B_9}$	=	$x_3 \mathbf{a}_1 + y_3 \mathbf{a}_2$	=	$ax_3\mathbf{\hat{x}} + by_3\mathbf{\hat{y}}$	(4g)	${\rm Ge}\ {\rm I}$
${f B_{10}}$	=	$-x_3{f a}_1-y_3{f a}_2$	=	$-ax_3\mathbf{\hat{x}}-by_3\mathbf{\hat{y}}$	(4g)	${\rm Ge}\ {\rm I}$
B_{11}	=	$-\left(x_3-\frac{1}{2}\right) \mathbf{a}_1+\left(y_3+\frac{1}{2}\right) \mathbf{a}_2$	=	$-a\left(x_3 - \frac{1}{2}\right) \hat{\mathbf{x}} + b \left(y_3 + \frac{1}{2}\right) \hat{\mathbf{y}}$	(4g)	$\operatorname{Ge} I$
$\mathbf{B_{12}}$	=	$\left(x_3 + \frac{1}{2}\right) \mathbf{a}_1 - \left(y_3 - \frac{1}{2}\right) \mathbf{a}_2$	=	$a\left(x_3 + \frac{1}{2}\right) \hat{\mathbf{x}} - b \left(y_3 - \frac{1}{2}\right) \hat{\mathbf{y}}$	(4g)	$\operatorname{Ge} I$
${f B_{13}}$	=	$x_4 \mathbf{a}_1 + y_4 \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$ax_4\hat{\mathbf{x}} + by_4\hat{\mathbf{y}} + \frac{1}{2}c\hat{\mathbf{z}}$	(4h)	As III
${ m B_{14}}$	=	$-x_4\mathbf{a}_1 - y_4\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$-ax_4\mathbf{\hat{x}} - by_4\mathbf{\hat{y}} + \frac{1}{2}c\mathbf{\hat{z}}$	(4h)	As III
B_{15}	=	$-\left(x_4 - \frac{1}{2}\right) \mathbf{a}_1 + \left(y_4 + \frac{1}{2}\right) \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$-a\left(x_4-\frac{1}{2}\right)\hat{\mathbf{x}}+b\left(y_4+\frac{1}{2}\right)\hat{\mathbf{y}}+\frac{1}{2}c\hat{\mathbf{z}}$	(4h)	As III
${f B_{16}}$	=	$\left(x_4 + \frac{1}{2}\right) \mathbf{a}_1 - \left(y_4 - \frac{1}{2}\right) \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$a\left(x_4 + \frac{1}{2}\right) \hat{\mathbf{x}} - b\left(y_4 - \frac{1}{2}\right) \hat{\mathbf{y}} + \frac{1}{2}c\hat{\mathbf{z}}$	(4h)	As III
B_{17}	=	$x_5 \mathbf{a}_1 + y_5 \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$ax_5\mathbf{\hat{x}} + by_5\mathbf{\hat{y}} + \frac{1}{2}c\mathbf{\hat{z}}$	(4h)	As IV
B_{18}	=	$-x_5\mathbf{a}_1-y_5\mathbf{a}_2+rac{1}{2}\mathbf{a}_3$	=	$-ax_5\mathbf{\hat{x}} - by_5\mathbf{\hat{y}} + \frac{1}{2}c\mathbf{\hat{z}}$	(4h)	As IV
B_{19}	=	$-\left(x_{5}-\frac{1}{2}\right) \mathbf{a}_{1}+\left(y_{5}+\frac{1}{2}\right) \mathbf{a}_{2}+\frac{1}{2} \mathbf{a}_{3}$	=	$-a\left(x_5-\frac{1}{2}\right)\hat{\mathbf{x}}+b\left(y_5+\frac{1}{2}\right)\hat{\mathbf{y}}+\frac{1}{2}c\hat{\mathbf{z}}$	(4h)	As IV
${f B_{20}}$	=	$\left(x_5 + \frac{1}{2}\right) \mathbf{a}_1 - \left(y_5 - \frac{1}{2}\right) \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$a\left(x_5 + \frac{1}{2}\right) \hat{\mathbf{x}} - b\left(y_5 - \frac{1}{2}\right) \hat{\mathbf{y}} + \frac{1}{2}c\hat{\mathbf{z}}$	(4h)	As IV
$\mathbf{B_{21}}$	=	$x_6 \mathbf{a}_1 + y_6 \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$ax_6\mathbf{\hat{x}} + by_6\mathbf{\hat{y}} + \frac{1}{2}c\mathbf{\hat{z}}$	(4h)	$Ge\ II$
$\mathbf{B_{22}}$	=	$-x_6\mathbf{a}_1 - y_6\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$-ax_6\mathbf{\hat{x}} - by_6\mathbf{\hat{y}} + \frac{1}{2}c\mathbf{\hat{z}}$	(4h)	$Ge\ II$
B_{23}	=	$-\left(x_6 - \frac{1}{2}\right) \mathbf{a}_1 + \left(y_6 + \frac{1}{2}\right) \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$-a\left(x_6-\frac{1}{2}\right)\hat{\mathbf{x}}+b\left(y_6+\frac{1}{2}\right)\hat{\mathbf{y}}+\frac{1}{2}c\hat{\mathbf{z}}$	(4h)	Ge II
$\mathbf{B_{24}}$	=	$(x_6 + \frac{1}{2}) \mathbf{a}_1 - (y_6 - \frac{1}{2}) \mathbf{a}_2 + \frac{1}{2} \mathbf{a}_3$	=	$a\left(x_{6}+\frac{1}{2}\right)\hat{\mathbf{x}}-b\left(y_{6}-\frac{1}{2}\right)\hat{\mathbf{y}}+\frac{1}{2}c\hat{\mathbf{z}}$	(4h)	$Ge\ II$

References

- [1] J. H. Bryden, The crystal structures of the germanium-arsenic compounds: I. Germanium diarsenide, GeAs₂, Acta Cryst. **15**, 167–171 (1962), doi:10.1107/S0365110X62000407.
- [2] D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 2*, Comput. Mater. Sci. **161**, S1–S1011 (2019), doi:10.1016/j.commatsci.2018.10.043.

Found in

[1] P. Villars, GeAs₂ Crystal Structure (2016). PAULING FILE in: Inorganic Solid Phases, SpringerMaterials (online database), Springer, Heidelberg (ed.) SpringerMaterials.