
β -CuI (Keen-Hull) Structure: A2B_hP6_164_2d_d-001

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 4*. In preparation.

https://aflow.org/p/TVVQ

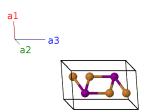
 $https://aflow.org/p/A2B_hP6_164_2d_d-001$

Prototype CuI

AFLOW prototype label A2B_hP6_164_2d_d-001

ICSD78429Pearson symbolhP6Space group number164Space group symbol $P\overline{3}m1$

- Copper(I) iodide can be found in three forms (Keen, 1995):
 - α-CuI is stable above 673 ± 8 K, and is in the δ -Bi₂O₃ structure, with the iodine atoms on the (2a) Wyckoff positions and the copper atoms occupying 1/8 of the (32f) positions.
 - $-\gamma$ -CuI (marshite) is the ground state, stable below 643 ± 2 K, and is also in the δ -Bi₂O₃ structure.


- In the intermediate temperature range β -CuI is generally agreed to be trigonal or hexagonal, but the exact structure is under dispute:
 - * (Kurdyumova, 1961) placed it in trigonal space group P3m1~#156. Their unit cell is three times larger than the standard cell for this structure, and is now considered erroneous. (Abrahams, 2008).
 - * (Bührer, 1977) placed it in hexagonal space group $P\overline{6}m2$ #187, with the copper atoms partially occupying two sites.
 - * (Sakuma, 1988) placed it in trigonal space group P3m1 # 156 with a smaller unit cell than (Kurdyumova, 1961) and no disorder on the copper sites.
 - * (Keen, 1994) placed it in trigonal space group $P\overline{3}m1 \# 164$ (this structure), with a unit cell similar to (Bührer, 1977) and (Sakuma, 1988). Like the former paper, the oxygen positions are disordered.
- The data from (Keen, 1994) was taken at 655K.
- The copper sites are only partially occupied: Cu-I (2d) is 85.1% filled, with the remaining 14.9% of the copper atoms going on the Cu-II (2d) site.

Trigonal (Hexagonal) primitive vectors

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c\,\hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$\frac{1}{3}\mathbf{a}_1 + \frac{2}{3}\mathbf{a}_2 + z_1\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + cz_1\hat{\mathbf{z}}$	(2d)	Cu I
$\mathbf{B_2}$	=	$\frac{2}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2 - z_1\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} - cz_1\hat{\mathbf{z}}$	(2d)	Cu I
$\mathbf{B_3}$	=	$\frac{1}{3}\mathbf{a}_1 + \frac{2}{3}\mathbf{a}_2 + z_2\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + cz_2\hat{\mathbf{z}}$	(2d)	Cu II
$\mathbf{B_4}$	=	$\frac{2}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2 - z_2\mathbf{a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} - \frac{\sqrt{3}}{6}a\mathbf{\hat{y}} - cz_2\mathbf{\hat{z}}$	(2d)	Cu II
${f B_5}$	=	$\frac{1}{3}\mathbf{a}_1 + \frac{2}{3}\mathbf{a}_2 + z_3\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + cz_3\hat{\mathbf{z}}$	(2d)	ΙΙ
${f B_6}$	=	$\frac{2}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2 - z_3\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} - cz_3\hat{\mathbf{z}}$	(2d)	ΙΙ

References

- [1] D. A. Keen and S. Hull, Determination of the structure of β -CuI by high-resolution neutron powder diffraction, J. Phys.: Condens. Matter **6**, 1637–1644 (1994), doi:10.1088/0953-8984/6/9/006.
- [2] T. Sakuma, Crystal Structure of β-CuI, J. Phys. Soc. Jpn. **57**, 565–569 (1988), doi:10.1143/JPSJ.57.565.
- [3] R. N. Kurdyumova and R. V. Baranova, An electron diffraction study of thin films of cuprous iodide, Sov. Phys. Cryst. 6, 318–321 (1961).
- [4] W. Bührer and W. Hälg, Crystal structure of high-temperature cuprous iodide and cuprous bromide, Electrochimica Acta 22, 701–704 (1977), doi:10.1016/0013-4686(77)80021-2.
- [5] D. A. Keen and S. Hull, The high-temperature structural behaviour of copper(I) iodide, J. Phys.: Condens. Matter 7, 5793-5804 (1995), doi:10.1088/0953-8984/7/29/007.

Found in

[1]	S. C. Abrahams, Inorganic structures in space group P3m1; coordinate analysis and systematic prediction of new ferroelectrics,
	Acta Crystallogr. Sect. B 64 , 426–437 (2008), doi:10.1107/S0108768108018144.