Trigonal α -Ca₂SiO₄ Structure: A2B4C_hP14_164_abd_di_d-001

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 4.* In preparation.

https://aflow.org/p/DBUP

https://aflow.org/p/A2B4C_hP14_164_abd_di_d-001

Prototype	Ca_2O_4Si	
AFLOW prototype label	$A2B4C_hP14_164_abd_di_d-001$	
ICSD	182052	
Pearson symbol	hP14	
Space group number	164	
Space group symbol	$P\overline{3}m1$	
AFLOW prototype command	aflowproto=A2B4C_hP14_164_abd_di_d-001 params= $a, c/a, z_3, z_4, z_5, x_6, z_6$	

• Ca₂SiO₄ exists in a variety of structures (Mumme, 1996; Yamnova, 2011):

- hexagonal α -Ca₂SiO₄, stable above 1445°C. There is some dispute as to whether this occurs in a

- * trigonal, space group $P\overline{3}m1$ #164 structure (shown here) or a
- * disordered hexagonal, space group $P6_3/mmc \#194$ structure.
- orthorhombic $\alpha_{H}\text{'-Ca}_2\text{SiO}_4,$ stable in the range 1160 1425°C,
- orthorhombic α_L '-Ca₂SiO₄, stable in the range 690 1160°C,
- monoclinic β -Ca₂SiO₄, stable in the range 500 690°C and found in nature as the metastable mineral larnite, and
- $\gamma\text{-}\mathrm{Ca_2SiO_4},$ stable below 500°C, in the olivine $(S1_2)$ structure.
- The ICSD entry for this structure is from (Eysel, 1970). The atomic positions are significantly different than those given in (Mumme, 1996), but we have no ICSD entry from that paper.

Trigonal (Hexagonal) primitive vectors

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	0	=	0	(1a)	Ca I
$\mathbf{B_2}$	=	$rac{1}{2}{f a}_3$	=	$rac{1}{2}c\mathbf{\hat{z}}$	(1b)	Ca II
B_3	=	$rac{1}{3}{f a}_1+rac{2}{3}{f a}_2+z_3{f a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{\sqrt{3}}{6}a\mathbf{\hat{y}} + cz_3\mathbf{\hat{z}}$	(2d)	Ca III
$\mathbf{B_4}$	=	$rac{2}{3}{f a}_1+rac{1}{3}{f a}_2-z_3{f a}_3$	=	$rac{1}{2}a\mathbf{\hat{x}}-rac{\sqrt{3}}{6}a\mathbf{\hat{y}}-cz_3\mathbf{\hat{z}}$	(2d)	Ca III
$\mathbf{B_5}$	=	$rac{1}{3}{f a}_1+rac{2}{3}{f a}_2+z_4{f a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{\sqrt{3}}{6}a\mathbf{\hat{y}} + cz_4\mathbf{\hat{z}}$	(2d)	ΟΙ
$\mathbf{B_6}$	=	$rac{2}{3}{f a}_1+rac{1}{3}{f a}_2-z_4{f a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} - \frac{\sqrt{3}}{6}a\mathbf{\hat{y}} - cz_4\mathbf{\hat{z}}$	(2d)	ΟΙ
$\mathbf{B_{7}}$	=	$rac{1}{3}{f a}_1+rac{2}{3}{f a}_2+z_5{f a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{\sqrt{3}}{6}a\mathbf{\hat{y}} + cz_5\mathbf{\hat{z}}$	(2d)	Si I
$\mathbf{B_8}$	=	$rac{2}{3}{f a}_1+rac{1}{3}{f a}_2-z_5{f a}_3$	=	$rac{1}{2}a\mathbf{\hat{x}}-rac{\sqrt{3}}{6}a\mathbf{\hat{y}}-cz_{5}\mathbf{\hat{z}}$	(2d)	Si I
\mathbf{B}_{9}	=	$x_6 \mathbf{a}_1 - x_6 \mathbf{a}_2 + z_6 \mathbf{a}_3$	=	$-\sqrt{3}ax_6\mathbf{\hat{y}}+cz_6\mathbf{\hat{z}}$	(6i)	O II
$\mathbf{B_{10}}$	=	$x_6 \mathbf{a}_1 + 2x_6 \mathbf{a}_2 + z_6 \mathbf{a}_3$	=	$\frac{3}{2}ax_6\mathbf{\hat{x}} + \frac{\sqrt{3}}{2}ax_6\mathbf{\hat{y}} + cz_6\mathbf{\hat{z}}$	(6i)	O II
$\mathbf{B_{11}}$	=	$-2x_6 \mathbf{a}_1 - x_6 \mathbf{a}_2 + z_6 \mathbf{a}_3$	=	$-rac{3}{2}ax_6\mathbf{\hat{x}}+rac{\sqrt{3}}{2}ax_6\mathbf{\hat{y}}+cz_6\mathbf{\hat{z}}$	(6i)	O II
$\mathbf{B_{12}}$	=	$-x_6 \mathbf{a}_1 + x_6 \mathbf{a}_2 - z_6 \mathbf{a}_3$	=	$\sqrt{3}ax_6\mathbf{\hat{y}}-cz_6\mathbf{\hat{z}}$	(6i)	O II
B_{13}	=	$2x_6 \mathbf{a}_1 + x_6 \mathbf{a}_2 - z_6 \mathbf{a}_3$	=	$\frac{3}{2}ax_6\mathbf{\hat{x}} - \frac{\sqrt{3}}{2}ax_6\mathbf{\hat{y}} - cz_6\mathbf{\hat{z}}$	(6i)	O II
B_{14}	=	$-x_6 \mathbf{a}_1 - 2x_6 \mathbf{a}_2 - z_6 \mathbf{a}_3$	=	$-rac{3}{2}ax_6\mathbf{\hat{x}}-rac{\sqrt{3}}{2}ax_6\mathbf{\hat{y}}-cz_6\mathbf{\hat{z}}$	(6i)	O II

References

- W. Mumme, L. Cranswick, and B. Chakoumakos, *Rietveld crystal structure refinements from high temperature neutron powder diffraction data for the polymorphs of dicalcium silicate*, Neues mineral. Abhandlungen 170, 171–188 (1996), doi:10.1134/S1063774511020209.
- W. Eysel and T. Hahn, Polymorphism and solid solution of Ca₂(GeO₄) and Ca₂(SiO₄), Z. Krystallogr. 131, 322–341 (1970), doi:10.1524/zkri.1970.131.16.322.

Found in

 N. A. Yamnova, N. V. Zubkova, N. N. Eremin, A. E. Zadov, and V. M. Gazeev, Crystal structure of larnite β-Ca₂SiO₄ and specific features of polymorphic transitions in dicalcium orthosilicate, Crystallogr. Rep. 56, 210–220 (2011), doi:10.1134/S1063774511020209.