α -As₂Te₃ Structure:

A2B3_mC20_12_2i_3i-003

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 4*. In preparation.

https://aflow.org/p/8W6Z

https://aflow.org/p/A2B3_mC20_12_2i_3i-003

Prototype As_2Te_3

AFLOW prototype label A2B3_mC20_12_2i_3i-003

ICSD196146Pearson symbolmC20Space group number12Space group symbolC2/m

AFLOW prototype command aflow --proto=A2B3_mC20_12_2i_3i-003

--params= $a, b/a, c/a, \beta, x_1, z_1, x_2, z_2, x_3, z_3, x_4, z_4, x_5, z_5$

- The ICSD entry lists Gd_2Cl_3 as the prototype, but we find that the structures are different enough to warrant giving α -As₂Te₃ its own entry.
- As₂Te₃ can also be found as β -As₂Te₃, which has the C33 (Bi₂Te₃) structure. (Morin, 2015)
- There are numerous structures with the AFLOW prototype label A2B3_mC20_12_2i_3i or A3B2_mC20_12_3i_2i. They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.
- We have identified the following structures as sufficiently different to warrant their own prototypes:
 - Prototypes with the label A2B3_mC20_12_2i_3i:

- * β -Ga₂O₃
- * α -As₂Te₃ (this structure)
- Prototypes with the label A3B2_mC20_12_3i_2i:
 - $*\ \mathrm{Mo_2As_3}$
 - $* Gd_2Cl_3$

Base-centered Monoclinic primitive vectors

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	$\begin{array}{c} \text{Atom} \\ \text{type} \end{array}$
$\mathbf{B_1}$	=	$x_1 \mathbf{a}_1 + x_1 \mathbf{a}_2 + z_1 \mathbf{a}_3$	=	$(ax_1 + cz_1\cos\beta) \hat{\mathbf{x}} + cz_1\sin\beta\hat{\mathbf{z}}$	(4i)	As I
$\mathbf{B_2}$	=	$-x_1 \mathbf{a}_1 - x_1 \mathbf{a}_2 - z_1 \mathbf{a}_3$	=	$-(ax_1+cz_1\cos\beta)\hat{\mathbf{x}}-cz_1\sin\beta\hat{\mathbf{z}}$	(4i)	As I
$\mathbf{B_3}$	=	$x_2 \mathbf{a}_1 + x_2 \mathbf{a}_2 + z_2 \mathbf{a}_3$	=	$(ax_2 + cz_2\cos\beta) \hat{\mathbf{x}} + cz_2\sin\beta \hat{\mathbf{z}}$	(4i)	As II
${f B_4}$	=	$-x_2\mathbf{a}_1 - x_2\mathbf{a}_2 - z_2\mathbf{a}_3$	=	$-\left(ax_2+cz_2\cos\beta\right)\hat{\mathbf{x}}-cz_2\sin\beta\hat{\mathbf{z}}$	(4i)	As II
${f B_5}$	=	$x_3 \mathbf{a}_1 + x_3 \mathbf{a}_2 + z_3 \mathbf{a}_3$	=	$(ax_3 + cz_3\cos\beta) \hat{\mathbf{x}} + cz_3\sin\beta \hat{\mathbf{z}}$	(4i)	Te I
${f B_6}$	=	$-x_3\mathbf{a}_1-x_3\mathbf{a}_2-z_3\mathbf{a}_3$	=	$-(ax_3+cz_3\cos\beta)\hat{\mathbf{x}}-cz_3\sin\beta\hat{\mathbf{z}}$	(4i)	Te I
$\mathbf{B_7}$	=	$x_4 \mathbf{a}_1 + x_4 \mathbf{a}_2 + z_4 \mathbf{a}_3$	=	$(ax_4 + cz_4\cos\beta)\hat{\mathbf{x}} + cz_4\sin\beta\hat{\mathbf{z}}$	(4i)	Te II
$\mathbf{B_8}$	=	$-x_4\mathbf{a}_1 - x_4\mathbf{a}_2 - z_4\mathbf{a}_3$	=	$-(ax_4+cz_4\cos\beta)\hat{\mathbf{x}}-cz_4\sin\beta\hat{\mathbf{z}}$	(4i)	Te II
$\mathbf{B_9}$	=	$x_5 \mathbf{a}_1 + x_5 \mathbf{a}_2 + z_5 \mathbf{a}_3$	=	$(ax_5 + cz_5\cos\beta) \ \hat{\mathbf{x}} + cz_5\sin\beta \ \hat{\mathbf{z}}$	(4i)	Te III
$\mathbf{B_{10}}$	=	$-x_5\mathbf{a}_1 - x_5\mathbf{a}_2 - z_5\mathbf{a}_3$	=	$-(ax_5+cz_5\cos\beta)\mathbf{\hat{x}}-cz_5\sin\beta\mathbf{\hat{z}}$	(4i)	Te III

References

[1] C. Morin, S. Corallini, J. C., J.-B. Vaney, G. Delaizir, J.-C. Crivello, E. B. Lopes, A. Piarristeguy, J. Monnier, C. Candolfi, V. Nassif, G. J. Cuello, A. Pradel, A. P. Goncalves, B. Lenoir, and E. Alleno, *Polymorphism in Thermoelectric As*₂*Te*₃, Inorg. Chem. **54**, 9936–9947 (2015), doi:10.1021/acs.inorgchem.5b01676.