β -Ga₂O₃ Structure: A2B3_mC20_12_2i_3i-001

This structure originally had the label A2B3_mC2O_12_2i_3i. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 3*, Comput. Mater. Sci. **199**, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

https://aflow.org/p/LKDZ

 $https://aflow.org/p/A2B3_mC20_12_2i_3i-001$

Prototype Ga_2O_3

AFLOW prototype label A2B3_mC20_12_2i_3i-001

ICSD83645Pearson symbolmC20Space group number12Space group symbolC2/m

AFLOW prototype command aflow --proto=A2B3_mC20_12_2i_3i-001

--params= $a, b/a, c/a, \beta, x_1, z_1, x_2, z_2, x_3, z_3, x_4, z_4, x_5, z_5$

Other compounds with this structure

 Al_2O_3

- Ga₂O₃ exhibits a variety of structures:
 - $-\alpha Ga_2O_3$, which has the corundum $(D5_1)$ structure,
 - $-\beta Ga_2O_3$ (this structure),
 - $-\gamma Ga_2O_3$, and
 - $-\epsilon Ga_2O_3$, a structure with many vacancies which can be approximated by the κ alumina structure.
- There are numerous structures with the AFLOW prototype label A2B3_mC20_12_2i_3i or A3B2_mC20_12_3i_2i. They are generated by the same symmetry operations with different sets of parameters (--params) specified in their corresponding CIF files.

- We have identified the following structures as sufficiently different to warrant their own prototypes:
 - Prototypes with the label A2B3_mC20_12_2i_3i:
 - * β -Ga₂O₃ (this structure)
 - * α -As₂Te₃
 - Prototypes with the label A3B2_mC20_12_3i_2i:
 - $* Mo_2As_3$
 - $* \ Gd_2Cl_3$

Base-centered Monoclinic primitive vectors

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{1}{2}b\,\hat{\mathbf{y}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}b\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c\cos\beta\,\hat{\mathbf{x}} + c\sin\beta\,\hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
${f B_1}$	=	$x_1 \mathbf{a}_1 + x_1 \mathbf{a}_2 + z_1 \mathbf{a}_3$	=	$(ax_1 + cz_1\cos\beta)\hat{\mathbf{x}} + cz_1\sin\beta\hat{\mathbf{z}}$	(4i)	Ga I
$\mathbf{B_2}$	=	$-x_1 \mathbf{a}_1 - x_1 \mathbf{a}_2 - z_1 \mathbf{a}_3$	=	$-(ax_1+cz_1\cos\beta)\hat{\mathbf{x}}-cz_1\sin\beta\hat{\mathbf{z}}$	(4i)	Ga I
${f B_3}$	=	$x_2 \mathbf{a}_1 + x_2 \mathbf{a}_2 + z_2 \mathbf{a}_3$	=	$(ax_2 + cz_2\cos\beta) \ \hat{\mathbf{x}} + cz_2\sin\beta \ \hat{\mathbf{z}}$	(4i)	Ga II
B_4	=	$-x_2\mathbf{a}_1 - x_2\mathbf{a}_2 - z_2\mathbf{a}_3$	=	$-\left(ax_2+cz_2\cos\beta\right)\hat{\mathbf{x}}-cz_2\sin\beta\hat{\mathbf{z}}$	(4i)	Ga II
B_5	=	$x_3 \mathbf{a}_1 + x_3 \mathbf{a}_2 + z_3 \mathbf{a}_3$	=	$(ax_3 + cz_3\cos\beta)\hat{\mathbf{x}} + cz_3\sin\beta\hat{\mathbf{z}}$	(4i)	ΟI
${f B_6}$	=	$-x_3\mathbf{a}_1-x_3\mathbf{a}_2-z_3\mathbf{a}_3$	=	$-\left(ax_3+cz_3\cos\beta\right)\hat{\mathbf{x}}-cz_3\sin\beta\hat{\mathbf{z}}$	(4i)	ΟI
$\mathbf{B_7}$	=	$x_4 \mathbf{a}_1 + x_4 \mathbf{a}_2 + z_4 \mathbf{a}_3$	=	$(ax_4 + cz_4\cos\beta)\hat{\mathbf{x}} + cz_4\sin\beta\hat{\mathbf{z}}$	(4i)	O II
B_8	=	$-x_4\mathbf{a}_1 - x_4\mathbf{a}_2 - z_4\mathbf{a}_3$	=	$-\left(ax_4+cz_4\cos\beta\right)\hat{\mathbf{x}}-cz_4\sin\beta\hat{\mathbf{z}}$	(4i)	O II
$\mathbf{B_9}$	=	$x_5 \mathbf{a}_1 + x_5 \mathbf{a}_2 + z_5 \mathbf{a}_3$	=	$(ax_5 + cz_5\cos\beta) \ \hat{\mathbf{x}} + cz_5\sin\beta \ \hat{\mathbf{z}}$	(4i)	O III
B_{10}	=	$-x_5\mathbf{a}_1-x_5\mathbf{a}_2-z_5\mathbf{a}_3$	=	$-\left(ax_5+cz_5\cos\beta\right)\mathbf{\hat{x}}-cz_5\sin\beta\mathbf{\hat{z}}$	(4i)	O III

References

[1] J. Åhman, G. Svensson, and J. Albertsson, A Reinvestigation of β -Gallium Oxide, Acta Crystallogr. Sect. C **52**, 1336–1338 (1996), doi:10.1107/S0108270195016404.