Pyrochlore Iridate (Eu₂Ir₂O₇, $E8_1$) Structure: A2B2C7_cF88_227_c_d_af-001

This structure originally had the label A2B2C7_cF88_227_c_d_af. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library* of Crystallographic Prototypes: Part 2, Comput. Mater. Sci. **161**, S1 (2019). doi: 10.1016/j.commatsci.2018.10.043

 $\rm https://aflow.org/p/0R9R$

 $https://aflow.org/p/A2B2C7_cF88_227_c_d_af-001$

Prototype	$Eu_2Ir_2O_7$
AFLOW prototype label	A2B2C7_cF88_227_c_d_af-001
Strukturbericht designation	$E8_1$
Mineral name	pyrochlore iridate
ICSD	135031
Pearson symbol	cF88
Space group number	227
Space group symbol	$Fd\overline{3}m$
AFLOW prototype command	aflowproto=A2B2C7_cF88_227_c_d_af-001 params= a, x_4

Other compounds with this structure

 $FNb_2(Nb, Ca)_2O_6 \text{ ("synthetic" pyrochlore), (Nb, Ta, Ti)}_2(Ca, Ce, Na, K)_2(F, O)_7 \text{ ("natural" pyrhochlore), (F, O, OH)(Nb, Fe)}_2(Ca, Ce, Na, K)_2O_6 \text{ (Koppit), (F, OH)Sb}_2(Ca, Mn, Na)_2O_6 \text{ (Roméite), (OH)Sb}_2(Ca, Fe, Na)_2O_6 \text{ (Scheebergite), (Sb, Ti)}_2(Ca, Fe, Mn, Na)_2(O, OH)_6 \text{ (Lewisite), (OH, F)(Nb, Ta, Ti)}_2(Ca, Fe, Na)_2O_6 \text{ (Pyrrhite), (OH, F)(Nb, Ta)}_2(Ca, Fe, Na)_2O_6 \text{ (Mikrolith), Sb}_2Pb_2O_7 \text{ (Bindheimite), (H}_2O)_{0.875}(Al_{0.8125}Mg_{0.1875})_2Na_{0.375}[F_{0.65}(OH)_{0.35}]_6 \text{ (Ralstonite), Sb}_3O_6OH, BiTa_2O_6F, Sn_2Nb_2O_7, Sn_2Nd_2O_7, Sn_2Ta_2O_7, Ca_2Nb_2O_7, Ca_2Ru_2O_7, Dy_2GaSbO_7, In_2Ge_2O_7, Pr_3IrO_7, Y_2Mn_2O_7, Yb_2Ir_2O_7 \text{ (Bindheimite), Sh}_2O_6 \text{ (Bindheimite), Sh}_2O_6 \text{ (Bindheimite), Sh}_2O_6OH, BiTa_2O_6F, Sn_2Nb_2O_7, Sn_2Nd_2O_7, Sn_2Ta_2O_7, Ca_2Nb_2O_7, Ca_2Ru_2O_7, Dy_2GaSbO_7, In_2Ge_2O_7, Pr_3IrO_7, Y_2Mn_2O_7, Yb_2Ir_2O_7 \text{ (Bindheimite), Sh}_2O_6OH, BiTa_2O_6F, Sn_2Nb_2O_7, Sn_2Nd_2O_7, Sn_2Nb_2O_7, Ca_2Nb_2O_7, Ca_2Ru_2O_7, Dy_2GaSbO_7, In_2Ge_2O_7, Pr_3IrO_7, Y_2Mn_2O_7, Yb_2Ir_2O_7 \text{ (Bindheimite), Sh}_2O_6OH, BiTa_2O_6F, Sn_2Nb_2O_7, Sn_2Nd_2O_7, Sn_2Nb_2O_7, Ca_2Nb_2O_7, Ca_2Ru_2O_7, Dy_2GaSbO_7, In_2Ge_2O_7, Pr_3IrO_7, Y_2Mn_2O_7, Yb_2Ir_2O_7 \text{ (Bindheimite), Sh}_2O_7O_7, Sn_2Nb_2O_7, Sn_2$

- (Herrmann, 1943) uses Strukturbericht $E8_1$ to describe the cubic pyrochlore structures. These have the general formula $R_2Q_2X_7$, where the X atoms or radicals occupy the (4a) and (48f) sites, and the R and Q atoms occupy the (16c) and(16d) sites. In many cases the sites are only partially filled and/or have mixed chemistry. We use $Eu_2Ir_2O_7$ as our prototype because it represents a fully filled system.
- We take our data from (Sagayama, 2013), but the ICSD entry is from the later work of (Nenoff, 2021).

Face-centered Cubic primitive vectors

a_1	=	$\frac{1}{2}a\mathbf{\hat{y}} + \frac{1}{2}a\mathbf{\hat{z}}$
a_2	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{1}{2}a\mathbf{\hat{z}}$
a_3	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{1}{2}a\mathbf{\hat{y}}$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
B_1	=	$\frac{1}{8}$ $\mathbf{a}_1 + \frac{1}{8}$ $\mathbf{a}_2 + \frac{1}{8}$ \mathbf{a}_3	=	$rac{1}{8}a\mathbf{\hat{x}}+rac{1}{8}a\mathbf{\hat{y}}+rac{1}{8}a\mathbf{\hat{z}}$	(8a)	ΟI
B_2	=	$rac{7}{8} {f a}_1 + rac{7}{8} {f a}_2 + rac{7}{8} {f a}_3$	=	$rac{7}{8}a\mathbf{\hat{x}}+rac{7}{8}a\mathbf{\hat{y}}+rac{7}{8}a\mathbf{\hat{z}}$	(8a)	ΟΙ
B_3	=	0	=	0	(16c)	Eu I
$\mathbf{B_4}$	=	$rac{1}{2} {f a}_3$	=	$rac{1}{4}a\mathbf{\hat{x}}+rac{1}{4}a\mathbf{\hat{y}}$	(16c)	Eu I
B_5	=	$rac{1}{2} {f a}_2$	=	$rac{1}{4}a\mathbf{\hat{x}}+rac{1}{4}a\mathbf{\hat{z}}$	(16c)	Eu I
B_6	=	$rac{1}{2} {f a}_1$	=	$rac{1}{4}a\mathbf{\hat{y}}+rac{1}{4}a\mathbf{\hat{z}}$	(16c)	Eu I
B_7	=	$rac{1}{2}{f a}_1+rac{1}{2}{f a}_2+rac{1}{2}{f a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{1}{2}a\mathbf{\hat{y}} + \frac{1}{2}a\mathbf{\hat{z}}$	(16d)	Ir I
B_8	=	$rac{1}{2} {f a}_1 + rac{1}{2} {f a}_2$	=	$rac{1}{4}a\mathbf{\hat{x}}+rac{1}{4}a\mathbf{\hat{y}}+rac{1}{2}a\mathbf{\hat{z}}$	(16d)	Ir I
B_9	=	$rac{1}{2} {f a}_1 + rac{1}{2} {f a}_3$	=	$rac{1}{4}a\mathbf{\hat{x}}+rac{1}{2}a\mathbf{\hat{y}}+rac{1}{4}a\mathbf{\hat{z}}$	(16d)	Ir I
B_{10}	=	$rac{1}{2}\mathbf{a}_2+rac{1}{2}\mathbf{a}_3$	=	$rac{1}{2}a\mathbf{\hat{x}} + rac{1}{4}a\mathbf{\hat{y}} + rac{1}{4}a\mathbf{\hat{z}}$	(16d)	Ir I
B_{11}	=	$-(x_4-\frac{1}{4}) \mathbf{a}_1+x_4 \mathbf{a}_2+x_4 \mathbf{a}_3$	=	$ax_4\mathbf{\hat{x}} + rac{1}{8}a\mathbf{\hat{y}} + rac{1}{8}a\mathbf{\hat{z}}$	(48f)	O II
B_{12}	=	$x_4 \mathbf{a}_1 - \left(x_4 - \frac{1}{4}\right) \mathbf{a}_2 - \left(x_4 - \frac{1}{4}\right) \mathbf{a}_3$	=	$-a\left(x_4-rac{1}{4} ight)\mathbf{\hat{x}}+rac{1}{8}a\mathbf{\hat{y}}+rac{1}{8}a\mathbf{\hat{z}}$	(48f)	O II
B_{13}	=	$x_4 \mathbf{a}_1 - \left(x_4 - \frac{1}{4}\right) \mathbf{a}_2 + x_4 \mathbf{a}_3$	=	$\frac{1}{8}a\hat{\mathbf{x}} + ax_4\hat{\mathbf{y}} + \frac{1}{8}a\hat{\mathbf{z}}$	(48f)	O II
B ₁₄	=	$-\left(x_4-rac{1}{4} ight)\mathbf{a}_1+x_4\mathbf{a}_2-\left(x_4-rac{1}{4} ight)\mathbf{a}_3$	=	$\frac{1}{8}a\hat{\mathbf{x}} - a\left(x_4 - \frac{1}{4}\right)\hat{\mathbf{y}} + \frac{1}{8}a\hat{\mathbf{z}}$	(48f)	O II
B_{15}	=	$x_4 \mathbf{a}_1 + x_4 \mathbf{a}_2 - (x_4 - \frac{1}{4}) \mathbf{a}_3$	=	$rac{1}{8}a\mathbf{\hat{x}}+rac{1}{8}a\mathbf{\hat{y}}+ax_4\mathbf{\hat{z}}$	(48f)	O II
B ₁₆	=	$-(x_4-rac{1}{4}) \mathbf{a}_1 - (x_4-rac{1}{4}) \mathbf{a}_2 + x_4 \mathbf{a}_3$	=	$\frac{1}{8}a\hat{\mathbf{x}} + \frac{1}{8}a\hat{\mathbf{y}} - a\left(x_4 - \frac{1}{4}\right)\hat{\mathbf{z}}$	(48f)	O II

$$\mathbf{B_{17}} = (x_4 + \frac{3}{4}) \mathbf{a}_1 - x_4 \mathbf{a}_2 + (x_4 + \frac{3}{4}) \mathbf{a}_3 = \frac{3}{8}a\,\mathbf{\hat{x}} + a\,(x_4 + \frac{3}{4})\,\mathbf{\hat{y}} + \frac{3}{8}a\,\mathbf{\hat{z}}$$
(48f) O II

$$\mathbf{B_{18}} = -x_4 \,\mathbf{a}_1 + \left(x_4 + \frac{3}{4}\right) \,\mathbf{a}_2 - x_4 \,\mathbf{a}_3 = \frac{3}{8} a \,\mathbf{\hat{x}} - a x_4 \,\mathbf{\hat{y}} + \frac{3}{8} a \,\mathbf{\hat{z}} \tag{48f} \quad \text{O II} \\
 \mathbf{B_{19}} = -x_4 \,\mathbf{a}_1 + \left(x_4 + \frac{3}{4}\right) \,\mathbf{a}_2 + = a \left(x_4 + \frac{3}{4}\right) \,\mathbf{\hat{x}} + \frac{3}{8} a \,\mathbf{\hat{y}} + \frac{3}{8} a \,\mathbf{\hat{z}} \tag{48f} \quad \text{O II} \\$$

$$= -x_4 \mathbf{a}_1 + (x_4 + \frac{3}{4}) \mathbf{a}_2 + = a \left(x_4 + \frac{3}{4}\right) \hat{\mathbf{x}} + \frac{3}{8} a \hat{\mathbf{y}} + \frac{3}{8} a \hat{\mathbf{z}}$$
(48f) O II
$$\left(x_4 + \frac{3}{4}\right) \mathbf{a}_3$$

$$\mathbf{B_{20}} = (x_4 + \frac{3}{4}) \mathbf{a}_1 - x_4 \mathbf{a}_2 - x_4 \mathbf{a}_3 = -ax_4 \hat{\mathbf{x}} + \frac{3}{8}a \hat{\mathbf{y}} + \frac{3}{8}a \hat{\mathbf{z}}$$
(48f) O II

$$\mathbf{B_{21}} = -x_4 \mathbf{a}_1 - x_4 \mathbf{a}_2 + (x_4 + \frac{3}{4}) \mathbf{a}_3 = \frac{3}{8}a \hat{\mathbf{x}} + \frac{3}{8}a \hat{\mathbf{y}} - ax_4 \hat{\mathbf{z}}$$
(48f) O II

$$\mathbf{B_{22}} = (x_4 + \frac{3}{4}) \mathbf{a}_1 + (x_4 + \frac{3}{4}) \mathbf{a}_2 - x_4 \mathbf{a}_3 = \frac{3}{8}a \, \hat{\mathbf{x}} + \frac{3}{8}a \, \hat{\mathbf{y}} + a \left(x_4 + \frac{3}{4}\right) \hat{\mathbf{z}}$$
(48f) O II

References

- H. Sagayama, D. Uematsu, T. Arima, K. Sugimoto, J. J. Ishikawa, E. O'Farrell, and S. Nakatsuji, Determination of longrange all-in-all-out ordering of Ir⁴⁺ moments in a pyrochlore iridate Eu₂Ir₂O₇ by resonant x-ray diffraction, Phys. Rev. B 87, 100403 (2013), doi:10.1103/PhysRevB.87.100403.
- [2] C. Hermann, O. Lohrmann, and H. Philipp, eds., Strukturbericht Band II 1928-1932 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
- [3] K. Herrmann, ed., Strukturbericht Band VII 1939 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1943).
- [4] T. M. Nenoff, D. X. Rademacher, M. A. Rodriguez, T. J. Garino, T. Subramani, and A. Navrotsky, Structure-Property and Thermodynamic Relationships in Rare Earth (Y, Eu, Pr) Iridate Pyrochlores, J. Solid State Chem. 299, 122163 (2021), doi:10.1016/j.jssc.2021.122163.

Found in

 S. H. Chun, B. Yuan, D. Casa, J. Kim, C.-Y. Kim, Z. Tian, Y. Qiu, S. Nakatsuji, and Y.-J. Kim, Magnetic Excitations across the Metal-Insulator Transition in the Pyrochlore Iridate Eu₂Ir₂O₇, Phys. Rev. Lett. **120**, 177203 (2018), doi:10.1103/PhysRevLett.120.177203.