Predicted Li_2MgH_{16} 300 GPa Structure: A16B2C_hP19_164_2d2i_d_a-001

This structure originally had the label A16B2C_hP19_164_2d2i_d_b. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 3*, Comput. Mater. Sci. **199**, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

https://aflow.org/p/LLDQ

https://aflow.org/p/A16B2C_hP19_164_2d2i_d_a-001

Prototype	$H_{16}Li_2Mg$		
AFLOW prototype label	$A16B2C_hP19_164_2d2i_d_a-001$		
ICSD	none		
Pearson symbol	hP19		
Space group number	164		
Space group symbol	$P\overline{3}m1$		
AFLOW prototype command	aflowproto=A16B2C_hP19_164_2d2i_d_a-001 params=a, c/a, z_2, z_3, z_4, x_5, z_5, x_6, z_6		

• This structure is predicted to be the zero-temperature ground state of $\text{Li}_2\text{MgH}_{16}$ at 300 GPa. It is of primarily of interest because a metastable cubic structure with the same composition is predicted to be superconducting at 250 GPa with $T_c = 430 - 473\text{K}$.

Trigonal (Hexagonal) primitive vectors

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$
$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$
$$\mathbf{a_3} = c\,\hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	0	=	0	(1a)	Mg I
B_2	=	$rac{1}{3}{f a}_1+rac{2}{3}{f a}_2+z_2{f a}_3$	=	$rac{1}{2}a\mathbf{\hat{x}}+rac{\sqrt{3}}{6}a\mathbf{\hat{y}}+cz_2\mathbf{\hat{z}}$	(2d)	ΗI
B_3	=	$rac{2}{3}{f a}_1+rac{1}{3}{f a}_2-z_2{f a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} - \frac{\sqrt{3}}{6}a\mathbf{\hat{y}} - cz_2\mathbf{\hat{z}}$	(2d)	ΗI
$\mathbf{B_4}$	=	$rac{1}{3}{f a}_1+rac{2}{3}{f a}_2+z_3{f a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{\sqrt{3}}{6}a\mathbf{\hat{y}} + cz_3\mathbf{\hat{z}}$	(2d)	ΗII
B_5	=	$rac{2}{3}{f a}_1+rac{1}{3}{f a}_2-z_3{f a}_3$	=	$rac{1}{2}a\mathbf{\hat{x}}-rac{\sqrt{3}}{6}a\mathbf{\hat{y}}-cz_{3}\mathbf{\hat{z}}$	(2d)	ΗII
\mathbf{B}_{6}	=	$rac{1}{3}{f a}_1+rac{2}{3}{f a}_2+z_4{f a}_3$	=	$rac{1}{2}a\mathbf{\hat{x}}+rac{\sqrt{3}}{6}a\mathbf{\hat{y}}+cz_4\mathbf{\hat{z}}$	(2d)	Li I
B_7	=	$rac{2}{3}{f a}_1+rac{1}{3}{f a}_2-z_4{f a}_3$	=	$rac{1}{2}a\mathbf{\hat{x}}-rac{\sqrt{3}}{6}a\mathbf{\hat{y}}-cz_4\mathbf{\hat{z}}$	(2d)	Li I
$\mathbf{B_8}$	=	$x_5 \mathbf{a}_1 - x_5 \mathbf{a}_2 + z_5 \mathbf{a}_3$	=	$-\sqrt{3}ax_5\mathbf{\hat{y}}+cz_5\mathbf{\hat{z}}$	(6i)	H III
\mathbf{B}_{9}	=	$x_5 \mathbf{a}_1 + 2x_5 \mathbf{a}_2 + z_5 \mathbf{a}_3$	=	$rac{3}{2}ax_5\mathbf{\hat{x}}+rac{\sqrt{3}}{2}ax_5\mathbf{\hat{y}}+cz_5\mathbf{\hat{z}}$	(6i)	H III
B_{10}	=	$-2x_5 \mathbf{a}_1 - x_5 \mathbf{a}_2 + z_5 \mathbf{a}_3$	=	$-rac{3}{2}ax_5\mathbf{\hat{x}}+rac{\sqrt{3}}{2}ax_5\mathbf{\hat{y}}+cz_5\mathbf{\hat{z}}$	(6i)	H III
B_{11}	=	$-x_5 \mathbf{a}_1 + x_5 \mathbf{a}_2 - z_5 \mathbf{a}_3$	=	$\sqrt{3}ax_{5}\mathbf{\hat{y}}-cz_{5}\mathbf{\hat{z}}$	(6i)	H III
B_{12}	=	$2x_5 \mathbf{a}_1 + x_5 \mathbf{a}_2 - z_5 \mathbf{a}_3$	=	$rac{3}{2}ax_5\mathbf{\hat{x}}-rac{\sqrt{3}}{2}ax_5\mathbf{\hat{y}}-cz_5\mathbf{\hat{z}}$	(6i)	H III
B_{13}	=	$-x_5 \mathbf{a}_1 - 2x_5 \mathbf{a}_2 - z_5 \mathbf{a}_3$	=	$-rac{3}{2}ax_5\mathbf{\hat{x}}-rac{\sqrt{3}}{2}ax_5\mathbf{\hat{y}}-cz_5\mathbf{\hat{z}}$	(6i)	H III
B_{14}	=	$x_6 \mathbf{a}_1 - x_6 \mathbf{a}_2 + z_6 \mathbf{a}_3$	=	$-\sqrt{3}ax_6\mathbf{\hat{y}}+cz_6\mathbf{\hat{z}}$	(6i)	H IV
B_{15}	=	$x_6 \mathbf{a}_1 + 2x_6 \mathbf{a}_2 + z_6 \mathbf{a}_3$	=	$\frac{3}{2}ax_6\mathbf{\hat{x}} + \frac{\sqrt{3}}{2}ax_6\mathbf{\hat{y}} + cz_6\mathbf{\hat{z}}$	(6i)	H IV
$\mathbf{B_{16}}$	=	$-2x_6 \mathbf{a}_1 - x_6 \mathbf{a}_2 + z_6 \mathbf{a}_3$	=	$-rac{3}{2}ax_6\mathbf{\hat{x}}+rac{\sqrt{3}}{2}ax_6\mathbf{\hat{y}}+cz_6\mathbf{\hat{z}}$	(6i)	H IV
B_{17}	=	$-x_6 \mathbf{a}_1 + x_6 \mathbf{a}_2 - z_6 \mathbf{a}_3$	=	$\sqrt{3}ax_{6}\mathbf{\hat{y}}-cz_{6}\mathbf{\hat{z}}$	(6i)	H IV
B_{18}	=	$2x_6 \mathbf{a}_1 + x_6 \mathbf{a}_2 - z_6 \mathbf{a}_3$	=	$rac{3}{2}ax_6\mathbf{\hat{x}}-rac{\sqrt{3}}{2}ax_6\mathbf{\hat{y}}-cz_6\mathbf{\hat{z}}$	(6i)	H IV
B_{19}	=	$-x_6 \mathbf{a}_1 - 2x_6 \mathbf{a}_2 - z_6 \mathbf{a}_3$	=	$-rac{3}{2}ax_6\mathbf{\hat{x}}-rac{\sqrt{3}}{2}ax_6\mathbf{\hat{y}}-cz_6\mathbf{\hat{z}}$	(6i)	H IV

References

[1] Y. Sun, J. Lv, Y. Xie, H. Liu, and Y. Ma, Route to a Superconducting Phase above Room Temperature in Electron-Doped Hydride Compounds under High Pressure, Phys. Rev. Lett. **123**, 097001 (2019), doi:10.1103/PhysRevLett.123.097001.