Cu₁₅Si₄ $(D8_6)$ Structure: A15B4_cI76_220_ae_c-001

This structure originally had the label A15B4_cI76_220_ae_c. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, *The AFLOW Library* of Crystallographic Prototypes: Part 2, Comput. Mater. Sci. **161**, S1 (2019). doi: 10.1016/j.commatsci.2018.10.043

https://aflow.org/p/MVX2

 $https://aflow.org/p/A15B4_cI76_220_ae_c-001$

Prototype	$\mathrm{Cu}_{15}\mathrm{Si}_4$
AFLOW prototype label	$A15B4_cI76_220_ae_c-001$
Strukturbericht designation	$D8_{6}$
ICSD	629165
Pearson symbol	cI76
Space group number	220
Space group symbol	$I\overline{4}3d$
AFLOW prototype command	aflowproto=A15B4_cI76_220_ae_c-001 params= a, x_2, x_3, y_3, z_3

Other compounds with this structure

 $Cu_{15}As_4,\,Li_{15}Au_4,\,Li_{15}Ge_4,\,Li_{15}Si_4,\,Na_{15}Pb_4$

• (Mattern, 2007) take their data from (Mukherjee, 1969), and we use the ICSD information from that reference.

Body-centered Cubic primitive vectors

a_1	=	$-\tfrac{1}{2}a\mathbf{\hat{x}} + \tfrac{1}{2}a\mathbf{\hat{y}} + \tfrac{1}{2}a\mathbf{\hat{z}}$
a_2	=	$\frac{1}{2}a\mathbf{\hat{x}} - \frac{1}{2}a\mathbf{\hat{y}} + \frac{1}{2}a\mathbf{\hat{z}}$
\mathbf{a}_3	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{1}{2}a\mathbf{\hat{y}} - \frac{1}{2}a\mathbf{\hat{z}}$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
B_1	=	$rac{1}{4}{f a}_1+rac{5}{2}{f a}_2+rac{3}{2}{f a}_3$	=	$rac{3}{2}a\mathbf{\hat{x}}+rac{1}{4}a\mathbf{\hat{z}}$	(12a)	Cu I
$\mathbf{B_2}$	=	$\frac{3}{4}$ $\mathbf{a}_1 + \frac{7}{8}$ $\mathbf{a}_2 + \frac{1}{8}$ \mathbf{a}_3	=	$rac{1}{8}a\mathbf{\hat{x}}+rac{3}{4}a\mathbf{\hat{z}}$	(12a)	Cu I
B_3	=	$rac{3}{8} {f a}_1 + rac{1}{4} {f a}_2 + rac{5}{8} {f a}_3$	=	$rac{1}{4}a\mathbf{\hat{x}}+rac{3}{8}a\mathbf{\hat{y}}$	(12a)	Cu I
$\mathbf{B_4}$	=	$rac{1}{8}{f a}_1+rac{3}{4}{f a}_2+rac{7}{8}{f a}_3$	=	$rac{3}{4}a\mathbf{\hat{x}}+rac{1}{8}a\mathbf{\hat{y}}$	(12a)	Cu I
$\mathbf{B_5}$	=	$rac{5}{8}{f a}_1+rac{3}{8}{f a}_2+rac{1}{4}{f a}_3$	=	$rac{1}{4}a\mathbf{\hat{y}}+rac{3}{8}a\mathbf{\hat{z}}$	(12a)	Cu I
\mathbf{B}_{6}	=	$rac{7}{8}{f a}_1+rac{1}{8}{f a}_2+rac{3}{4}{f a}_3$	=	$rac{3}{4}a\mathbf{\hat{y}}+rac{1}{8}a\mathbf{\hat{z}}$	(12a)	Cu I
B_7	=	$2x_2 \mathbf{a}_1 + 2x_2 \mathbf{a}_2 + 2x_2 \mathbf{a}_3$	=	$ax_2\hat{\mathbf{x}} + ax_2\hat{\mathbf{y}} + ax_2\hat{\mathbf{z}}$	(16c)	Si I
$\mathbf{B_8}$	=	$\frac{1}{2}$ a ₁ - $\left(2x_2 - \frac{1}{2}\right)$ a ₃	=	$-ax_2\hat{\mathbf{x}}-a\left(x_2-\frac{1}{2}\right)\hat{\mathbf{y}}+ax_2\hat{\mathbf{z}}$	(16c)	Si I
\mathbf{B}_{9}	=	$-\left(2x_2-\frac{1}{2}\right)\mathbf{a}_2+\frac{1}{2}\mathbf{a}_3$	=	$-a\left(x_2-\frac{1}{2} ight)\hat{\mathbf{x}}+ax_2\hat{\mathbf{y}}-ax_2\hat{\mathbf{z}}$	(16c)	Si I
B_{10}	=	$-\left(2x_2-\frac{1}{2}\right)\mathbf{a}_1+\frac{1}{2}\mathbf{a}_2$	=	$ax_2\hat{\mathbf{x}} - ax_2\hat{\mathbf{y}} - a\left(x_2 - \frac{1}{2}\right)\hat{\mathbf{z}}$	(16c)	Si I
B ₁₁	=	$ \begin{array}{c} \left(2x_2 + \frac{1}{2}\right) \mathbf{a}_1 + \left(2x_2 + \frac{1}{2}\right) \mathbf{a}_2 + \\ \left(2x_2 + \frac{1}{2}\right) \mathbf{a}_3 \end{array} $	=	$a\left(x_{2}+\frac{1}{4}\right) \hat{\mathbf{x}}+a\left(x_{2}+\frac{1}{4}\right) \hat{\mathbf{y}}+a\left(x_{2}+\frac{1}{4}\right) \hat{\mathbf{z}}$	(16c)	Si I
B ₁₂	=	$\frac{1}{2} \mathbf{a}_1 - 2x_2 \mathbf{a}_3$	=	$-a\left(x_{2}+\frac{1}{4}\right)\mathbf{\hat{x}}-a\left(x_{2}-\frac{1}{4}\right)\mathbf{\hat{y}}+\\a\left(x_{2}+\frac{1}{4}\right)\mathbf{\hat{z}}$	(16c)	Si I
B_{13}	=	$-2x_2 \mathbf{a}_1 + \frac{1}{2} \mathbf{a}_2$	=	$a\left(x_{2}+\frac{1}{4}\right) \hat{\mathbf{x}}-a\left(x_{2}+\frac{1}{4}\right) \hat{\mathbf{y}}-a\left(x_{2}-\frac{1}{4}\right) \hat{\mathbf{z}}$	(16c)	Si I
B ₁₄	=	$-2x_2\mathbf{a}_2+\frac{1}{2}\mathbf{a}_3$	=	$-a\left(x_2-rac{1}{4} ight) \hat{\mathbf{x}}+a\left(x_2+rac{1}{4} ight) \hat{\mathbf{y}}- \ a\left(x_2+rac{1}{4} ight) \hat{\mathbf{z}}$	(16c)	Si I
B ₁₅	=	$egin{array}{lll} (y_3+z_3) \ {f a}_1+(x_3+z_3) \ {f a}_2+\ (x_3+y_3) \ {f a}_3 \end{array}$	=	$ax_3\hat{\mathbf{x}} + ay_3\hat{\mathbf{y}} + az_3\hat{\mathbf{z}}$	(48e)	Cu II
B ₁₆	=	$igg(-y_3+z_3+rac{1}{2}ig) {f a}_1 - \ (x_3-z_3) {f a}_2 - ig(x_3+y_3-rac{1}{2}ig) {f a}_3$	=	$-ax_3\mathbf{\hat{x}}-a\left(y_3-\frac{1}{2} ight)\mathbf{\hat{y}}+az_3\mathbf{\hat{z}}$	(48e)	Cu II
B ₁₇	=	$egin{array}{lll} (y_3-z_3) \; {f a}_1\!-\!ig(x_3+z_3-rac{1}{2}) \; {f a}_2+ \ ig(-x_3+y_3+rac{1}{2}) \; {f a}_3 \end{array}$	=	$-a\left(x_3-rac{1}{2} ight)\hat{\mathbf{x}}+ay_3\hat{\mathbf{y}}-az_3\hat{\mathbf{z}}$	(48e)	Cu II
B ₁₈	=	$-\left(y_3+z_3-rac{1}{2} ight) {f a}_1+ \left(x_3-z_3+rac{1}{2} ight) {f a}_2+\left(x_3-y_3 ight) {f a}_3$	=	$ax_3\mathbf{\hat{x}} - ay_3\mathbf{\hat{y}} - a\left(z_3 - \frac{1}{2}\right)\mathbf{\hat{z}}$	(48e)	Cu II
B ₁₉	=	$(x_3 + y_3) \mathbf{a}_1 + (y_3 + z_3) \mathbf{a}_2 + (x_3 + z_3) \mathbf{a}_3$	=	$az_3\mathbf{\hat{x}} + ax_3\mathbf{\hat{y}} + ay_3\mathbf{\hat{z}}$	(48e)	Cu II
B_{20}	=	$-\left(x_3+y_3-\frac{1}{2}\right) \mathbf{a}_1 + \\ \left(-y_3+z_3+\frac{1}{2}\right) \mathbf{a}_2 - (x_3-z_3) \mathbf{a}_3$	=	$az_3\mathbf{\hat{x}} - ax_3\mathbf{\hat{y}} - a\left(y_3 - \frac{1}{2}\right)\mathbf{\hat{z}}$	(48e)	Cu II

References

- M. Mattern, R. Seyrich, L. Wilde, C. Baehtz, M. Knapp, and J. Acker, *Phase formation of rapidly quenched Cu-Si alloys*, J. Alloys Compd. 429, 211–215 (2007), doi:10.1016/j.jallcom.2006.04.046.
- [2] K. P. Mukherjee, J. Bandyopadhyaya, and K. P. Gupta, Phase relationship and crystal structure of intermediate phases in the Cu-Si system in the composition range of 17 to 25 at. pct Si, Trans. Metal. Soc. AIME 245, 2335–2338 (1969).

Found in

[1] K. Sufryd, N. Ponweiser, P. Riani, K. W. Richter, and G. Cacciamani, *Experimental investigation of the Cu-Si phase diagram* at x(Cu)0.72, Intermetallics **19**, 1479–1488 (2011), doi:10.1016/j.intermet.2011.05.017.