
$D2_a$ (approximate TiBe₁₂) Structure: A12B_hP13_191_cdei_a-001

This structure originally had the label A12B_hP13_191_cdei_a. Calls to that address will be redirected here.

Cite this page as: D. Hicks, M. J. Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 3*, Comput. Mater. Sci. **199**, 110450 (2021), doi: 10.1016/j.commatsci.2021.110450.

https://aflow.org/p/FEUM

 $https://aflow.org/p/A12B_hP13_191_cdei_a-001$

Prototype $Be_{12}Ti$

AFLOW prototype label A12B_hP13_191_cdei_a-001

Strukturbericht designation $D2_a$

ICSD 58745

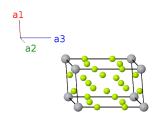
Pearson symbol hP13

Space group number 191

Space group symbol P6/mmm

AFLOW prototype command aflow --proto=A12B_hP13_191_cdei_a-001

--params= $a, c/a, z_4, z_5$


- The structure of TiBe₁₂ is not settled. (Raeuchle, 1952) described the structure as a somewhat disordered supercell containing 48 atoms with lattice constants $a = 29.44\text{\AA}$ and $c = 7.33\text{\AA}$, but they stated that a 'pseudo-cell' existed with dimensions $a = 4.23\text{\AA}$ and $c = 7.33\text{\AA}$. This pseudo-cell is described here, and was designated *Strukturbericht D2a* by Smithells (Brandes, 1992). Rauchle and Rundle suggested that the larger primitive cell was constructed from the multiple pseudo-cells, with the titanium atom alternating between the (1a) and (1b) Wyckoff positions.
- Other experimenters have suggested that the actual structure of $TiBe_{12}$ is tetragonal. (Jackson, 2016) presents first-principles calculations which suggest that the actual structure is the tetragonal $ThMn_{12}$ ($D2_b$) type.
- HfFe₆Ge₆ is the ternary form of this structure.

Hexagonal primitive vectors

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{\sqrt{3}}{2}a\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c\,\hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
${f B_1}$	=	0	=	0	(1a)	Ti I
$\mathbf{B_2}$	=	$rac{1}{3}\mathbf{a}_1+rac{2}{3}\mathbf{a}_2$	=	$\frac{1}{2}a\mathbf{\hat{x}} + \frac{\sqrt{3}}{6}a\mathbf{\hat{y}}$	(2c)	Be I
$\mathbf{B_3}$	=	$rac{2}{3}\mathbf{a}_1+rac{1}{3}\mathbf{a}_2$	=	$\frac{1}{2}a\mathbf{\hat{x}} - \frac{\sqrt{3}}{6}a\mathbf{\hat{y}}$	(2c)	Be I
${f B_4}$	=	$\frac{1}{3}\mathbf{a}_1 + \frac{2}{3}\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} + \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + \frac{1}{2}c\hat{\mathbf{z}}$	(2d)	Be II
${f B_5}$	=	$\frac{2}{3}\mathbf{a}_1 + \frac{1}{3}\mathbf{a}_2 + \frac{1}{2}\mathbf{a}_3$	=	$\frac{1}{2}a\hat{\mathbf{x}} - \frac{\sqrt{3}}{6}a\hat{\mathbf{y}} + \frac{1}{2}c\hat{\mathbf{z}}$	(2d)	Be II
${f B_6}$	=	$z_4{f a}_3$	=	$cz_4\mathbf{\hat{z}}$	(2e)	Be III
$\mathbf{B_7}$	=	$-z_4\mathbf{a}_3$	=	$-cz_{4}\mathbf{\hat{z}}$	(2e)	Be III
${f B_8}$	=	$rac{1}{2}\mathbf{a}_1+z_5\mathbf{a}_3$	=	$\frac{1}{4}a\hat{\mathbf{x}} - \frac{\sqrt{3}}{4}a\hat{\mathbf{y}} + cz_5\hat{\mathbf{z}}$	(6i)	${\rm Be\ IV}$
$\mathbf{B_9}$	=	$rac{1}{2}\mathbf{a}_2+z_5\mathbf{a}_3$	=	$\frac{1}{4}a\hat{\mathbf{x}} + \frac{\sqrt{3}}{4}a\hat{\mathbf{y}} + cz_5\hat{\mathbf{z}}$	(6i)	${\rm Be\ IV}$
${f B_{10}}$	=	$\frac{1}{2}\mathbf{a}_1 + \frac{1}{2}\mathbf{a}_2 + z_5\mathbf{a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}} + cz_5\mathbf{\hat{z}}$	(6i)	${\rm Be\ IV}$
$\mathbf{B_{11}}$	=	$rac{1}{2}\mathbf{a}_2-z_5\mathbf{a}_3$	=	$\frac{1}{4}a\hat{\mathbf{x}} + \frac{\sqrt{3}}{4}a\hat{\mathbf{y}} - cz_5\hat{\mathbf{z}}$	(6i)	${\rm Be\ IV}$
$\mathbf{B_{12}}$	=	$rac{1}{2}\mathbf{a}_1-z_5\mathbf{a}_3$	=	$\frac{1}{4}a\hat{\mathbf{x}} - \frac{\sqrt{3}}{4}a\hat{\mathbf{y}} - cz_5\hat{\mathbf{z}}$	(6i)	${\rm Be\ IV}$
$\mathbf{B_{13}}$	=	$rac{1}{2}{f a}_1 + rac{1}{2}{f a}_2 - z_5{f a}_3$	=	$\frac{1}{2}a\mathbf{\hat{x}}-cz_5\mathbf{\hat{z}}$	(6i)	${\rm Be\ IV}$

References

- [1] R. F. Raeuchle and R. E. Rundle, The Structure of TiBe₁₂, Acta Cryst. 5, 85–93 (1952), doi:10.1107/S0365110X52000186.
- [2] E. A. Brandes and G. B. Brook, eds., *Smithells Metals Reference Book* (Butterworth Heinemann, Oxford, Auckland, Boston, Johannesburg, Melbourne, New Delhi, 1992), seventh edn.

Found in

M. L. Jackson, P. A. Burr, and R. W. Grimes, Resolving the structure of TiBe₁₂, Acta Crystallogr. Sect. B 72, 277–280 (2016), doi:10.1107/S205252061600322X.