Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_cP20_213_cd-001

This structure originally had the label A_cP20_213_cd. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/4VEQ
or https://aflow.org/p/A_cP20_213_cd-001
or PDF Version

β-Mn ($A13$) Structure: A_cP20_213_cd-001

Picture of Structure; Click for Big Picture
Prototype Mn
AFLOW prototype label A_cP20_213_cd-001
Strukturbericht designation $A13$
ICSD 41775
Pearson symbol cP20
Space group number 213
Space group symbol $P4_132$
AFLOW prototype command aflow --proto=A_cP20_213_cd-001
--params=$a, \allowbreak x_{1}, \allowbreak y_{2}$

  • This is the high temperature form of manganese, stable in the range 727-1095$^\circ$C and metastable at room temperature (Donohue, 1982). The ground state is $\alpha$–Mn ($A12$).
  • This structure may also be found in the enantiomorphic space group $P4_{3}32$ #212.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (8c) Mn I
$\mathbf{B_{2}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Mn I
$\mathbf{B_{3}}$ = $- x_{1} \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Mn I
$\mathbf{B_{4}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (8c) Mn I
$\mathbf{B_{5}}$ = $\left(x_{1} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Mn I
$\mathbf{B_{6}}$ = $- \left(x_{1} - \frac{3}{4}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{3}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{3}{4}\right) \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) Mn I
$\mathbf{B_{7}}$ = $\left(x_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{1} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (8c) Mn I
$\mathbf{B_{8}}$ = $- \left(x_{1} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{1} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (8c) Mn I
$\mathbf{B_{9}}$ = $\frac{1}{8} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (12d) Mn II
$\mathbf{B_{10}}$ = $\frac{3}{8} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{3}{8}a \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (12d) Mn II
$\mathbf{B_{11}}$ = $\frac{7}{8} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ = $\frac{7}{8}a \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (12d) Mn II
$\mathbf{B_{12}}$ = $\frac{5}{8} \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ = $\frac{5}{8}a \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{3}{4}\right) \,\mathbf{\hat{z}}$ (12d) Mn II
$\mathbf{B_{13}}$ = $\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{8}a \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (12d) Mn II
$\mathbf{B_{14}}$ = $\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{3}{8}a \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (12d) Mn II
$\mathbf{B_{15}}$ = $- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{7}{8}a \,\mathbf{\hat{y}}+a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Mn II
$\mathbf{B_{16}}$ = $- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{3}{4}\right) \,\mathbf{\hat{x}}+\frac{5}{8}a \,\mathbf{\hat{y}}- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (12d) Mn II
$\mathbf{B_{17}}$ = $y_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{1}{8} \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}a \,\mathbf{\hat{z}}$ (12d) Mn II
$\mathbf{B_{18}}$ = $- y_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{3}{8} \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a \left(y_{2} + \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}a \,\mathbf{\hat{z}}$ (12d) Mn II
$\mathbf{B_{19}}$ = $\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{4}\right) \, \mathbf{a}_{2}+\frac{7}{8} \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{7}{8}a \,\mathbf{\hat{z}}$ (12d) Mn II
$\mathbf{B_{20}}$ = $- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} - \frac{3}{4}\right) \, \mathbf{a}_{2}+\frac{5}{8} \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{2} - \frac{3}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}a \,\mathbf{\hat{z}}$ (12d) Mn II

References

  • C. B. Shoemaker, D. P. Shoemaker, T. E. Hopkins, and S. Yindepti, Refinement of the structure of β-manganese and of a related phase in the Mn-Ni-Si system, Acta Crystallogr. Sect. B 34, 3573–3576 (1978), doi:10.1107/S0567740878011620.
  • J. Donohue, The Structures of the Elements (Robert E. Krieger Publishing Company, Malabar, Florida, 1982). Reprint of the 1974 John Wilely & Sons edition.

Prototype Generator

aflow --proto=A_cP20_213_cd --params=$a,x_{1},y_{2}$

Species:

Running:

Output: