Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_cI16_206_c-001

This structure originally had the label A_cI16_206_c. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/83MZ
or https://aflow.org/p/A_cI16_206_c-001
or PDF Version

BC8 (Si) Structure: A_cI16_206_c-001

Picture of Structure; Click for Big Picture
Prototype Si
AFLOW prototype label A_cI16_206_c-001
ICSD none
Pearson symbol cI16
Space group number 206
Space group symbol $Ia\overline{3}$
AFLOW prototype command aflow --proto=A_cI16_206_c-001
--params=$a, \allowbreak x_{1}$

  • This is a tetragonally bonded structure which packs more efficiently than diamond. See (Crain, 1995) and references therein. The reference compound chosen here, found in (Wentorf, 1963), is stable in the range 11-16 GPa.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $2 x_{1} \, \mathbf{a}_{1}+2 x_{1} \, \mathbf{a}_{2}+2 x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (16c) Si I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(2 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (16c) Si I
$\mathbf{B_{3}}$ = $- \left(2 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (16c) Si I
$\mathbf{B_{4}}$ = $- \left(2 x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16c) Si I
$\mathbf{B_{5}}$ = $- 2 x_{1} \, \mathbf{a}_{1}- 2 x_{1} \, \mathbf{a}_{2}- 2 x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (16c) Si I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(2 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (16c) Si I
$\mathbf{B_{7}}$ = $\left(2 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (16c) Si I
$\mathbf{B_{8}}$ = $\left(2 x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $- a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16c) Si I

References

  • J. R. H. Wentorf and J. S. Kasper, Two New Forms of Silicon, Science 139, 338–339 (1963), doi:10.1126/science.139.3552.338.b.
  • J. Crain, S. J. Clark, G. J. Ackland, M. C. Payne, V. Milman, P. D. Hatton, and B. J. Reid, Theoretical study of high-density phases of covalent semiconductors. I. {\em Ab initio} treatment, Phys. Rev. B 49, 5329–5340 (1994), doi:10.1103/PhysRevB.49.5329.

Prototype Generator

aflow --proto=A_cI16_206_c --params=$a,x_{1}$

Species:

Running:

Output: