Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A_cF240_202_h2i-001

This structure originally had the label A_cF240_202_h2i. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/TV0E
or https://aflow.org/p/A_cF240_202_h2i-001
or PDF Version

FCC C$_{60}$ Buckminsterfullerene Structure: A_cF240_202_h2i-001

Picture of Structure; Click for Big Picture
Prototype C
AFLOW prototype label A_cF240_202_h2i-001
Mineral name buckminsterfullerene
ICSD 74523
Pearson symbol cF240
Space group number 202
Space group symbol $Fm\overline{3}$
AFLOW prototype command aflow --proto=A_cF240_202_h2i-001
--params=$a, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$

  • This is an approximate representation of the structure of C$_{60}$ buckminsterfullerene. As noted by the authors, a careful analysis of the intensity data reveals that the molecules must pack in an uncorrelated array, in full agreement with the results from most previous diffraction and spectroscopic determinations.
  • The C$_{60}$ molecules are centered on the sites of an fcc lattice.
  • Below 249K there is a transition to a simple cubic phase of C$_{60}$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\left(y_{1} + z_{1}\right) \, \mathbf{a}_{1}- \left(y_{1} - z_{1}\right) \, \mathbf{a}_{2}+\left(y_{1} - z_{1}\right) \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{y}}+a z_{1} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{2}}$ = $- \left(y_{1} - z_{1}\right) \, \mathbf{a}_{1}+\left(y_{1} + z_{1}\right) \, \mathbf{a}_{2}- \left(y_{1} + z_{1}\right) \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{y}}+a z_{1} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{3}}$ = $\left(y_{1} - z_{1}\right) \, \mathbf{a}_{1}- \left(y_{1} + z_{1}\right) \, \mathbf{a}_{2}+\left(y_{1} + z_{1}\right) \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{y}}- a z_{1} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{4}}$ = $- \left(y_{1} + z_{1}\right) \, \mathbf{a}_{1}+\left(y_{1} - z_{1}\right) \, \mathbf{a}_{2}- \left(y_{1} - z_{1}\right) \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{y}}- a z_{1} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{5}}$ = $\left(y_{1} - z_{1}\right) \, \mathbf{a}_{1}+\left(y_{1} + z_{1}\right) \, \mathbf{a}_{2}- \left(y_{1} - z_{1}\right) \, \mathbf{a}_{3}$ = $a z_{1} \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{6}}$ = $- \left(y_{1} + z_{1}\right) \, \mathbf{a}_{1}- \left(y_{1} - z_{1}\right) \, \mathbf{a}_{2}+\left(y_{1} + z_{1}\right) \, \mathbf{a}_{3}$ = $a z_{1} \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{7}}$ = $\left(y_{1} + z_{1}\right) \, \mathbf{a}_{1}+\left(y_{1} - z_{1}\right) \, \mathbf{a}_{2}- \left(y_{1} + z_{1}\right) \, \mathbf{a}_{3}$ = $- a z_{1} \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{8}}$ = $- \left(y_{1} - z_{1}\right) \, \mathbf{a}_{1}- \left(y_{1} + z_{1}\right) \, \mathbf{a}_{2}+\left(y_{1} - z_{1}\right) \, \mathbf{a}_{3}$ = $- a z_{1} \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{z}}$ (48h) C I
$\mathbf{B_{9}}$ = $- \left(y_{1} - z_{1}\right) \, \mathbf{a}_{1}+\left(y_{1} - z_{1}\right) \, \mathbf{a}_{2}+\left(y_{1} + z_{1}\right) \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{x}}+a z_{1} \,\mathbf{\hat{y}}$ (48h) C I
$\mathbf{B_{10}}$ = $\left(y_{1} + z_{1}\right) \, \mathbf{a}_{1}- \left(y_{1} + z_{1}\right) \, \mathbf{a}_{2}- \left(y_{1} - z_{1}\right) \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{x}}+a z_{1} \,\mathbf{\hat{y}}$ (48h) C I
$\mathbf{B_{11}}$ = $- \left(y_{1} + z_{1}\right) \, \mathbf{a}_{1}+\left(y_{1} + z_{1}\right) \, \mathbf{a}_{2}+\left(y_{1} - z_{1}\right) \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{x}}- a z_{1} \,\mathbf{\hat{y}}$ (48h) C I
$\mathbf{B_{12}}$ = $\left(y_{1} - z_{1}\right) \, \mathbf{a}_{1}- \left(y_{1} - z_{1}\right) \, \mathbf{a}_{2}- \left(y_{1} + z_{1}\right) \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{x}}- a z_{1} \,\mathbf{\hat{y}}$ (48h) C I
$\mathbf{B_{13}}$ = $\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{14}}$ = $\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{15}}$ = $\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{16}}$ = $- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{17}}$ = $\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{18}}$ = $- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{19}}$ = $\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{20}}$ = $\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{21}}$ = $\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{22}}$ = $\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{23}}$ = $- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{24}}$ = $\left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{25}}$ = $\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{26}}$ = $- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}- a z_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{27}}$ = $- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{28}}$ = $\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+a z_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{29}}$ = $- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{30}}$ = $\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a z_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{31}}$ = $\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a y_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{32}}$ = $- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $a z_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a y_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{33}}$ = $- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{34}}$ = $\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a z_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{35}}$ = $\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} - y_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{36}}$ = $- \left(x_{2} + y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - y_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}+a z_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (96i) C II
$\mathbf{B_{37}}$ = $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{38}}$ = $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{39}}$ = $\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{40}}$ = $- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{41}}$ = $\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{42}}$ = $- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{43}}$ = $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{44}}$ = $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{45}}$ = $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{46}}$ = $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{47}}$ = $- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{48}}$ = $\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{49}}$ = $\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{50}}$ = $- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}- a z_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{51}}$ = $- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{52}}$ = $\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+a z_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{53}}$ = $- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{54}}$ = $\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a z_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{55}}$ = $\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a y_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{56}}$ = $- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $a z_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a y_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{57}}$ = $- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{58}}$ = $\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a z_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{59}}$ = $\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (96i) C III
$\mathbf{B_{60}}$ = $- \left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}+a z_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (96i) C III

References

  • D. L. Dorset and M. P. McCourt, Disorder and the molecular packing of C$_{60}$ buckminsterfullerene: a direct electron-crystallographic analysis, Acta Crystallogr. Sect. A 50, 344–351 (1994), doi:10.1107/S0108767393012607.

Prototype Generator

aflow --proto=A_cF240_202_h2i --params=$a,y_{1},z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3}$

Species:

Running:

Output: