AFLOW Prototype: AB_cP2_221_a_b-002
This structure originally had the label AB_cP2_221_b_a. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/QM6B
or
https://aflow.org/p/AB_cP2_221_a_b-002
or
PDF Version
Prototype | ClCs |
AFLOW prototype label | AB_cP2_221_a_b-002 |
Strukturbericht designation | $B2$ |
ICSD | 622367 |
Pearson symbol | cP2 |
Space group number | 221 |
Space group symbol | $Pm\overline{3}m$ |
AFLOW prototype command |
aflow --proto=AB_cP2_221_a_b-002
--params=$a$ |
AgCd, AgCe, AgDy, AgGd, AgHo, AgLa, AgLi, AgLu, AgMg, AgNd, AgSc, AgSm, AgTb, AgTm, AgZn, AlCe, AlCo, AlDy, AlFe, AlIr, AlLu, AlMg, AlNd, AlNi, AlOs, AlPd (H.T.), AlRe, AlRh, AlRu, AuCd, AuCs, AuDy, AuGd, AuHRb, AuHo, AuLa, AuLi, AuLu, AuMg, AuMn (H.T.), AuNd, AuPr, AuSc, AuSm, AuTb, AuTi (H.T.), AuTm, AuY, AuZn, BaCd, BaHg, BeNi, BePd, BiTl, CaCd, CaHg, CaIn, CaTl, CdCe, CdGd, CdLa, CdPr, CdSc, CdSm, CdSr, CdY, CeHg, CeMg, CeZn, CoFe, CoGa, CoHf, CoSc, CoTi, CoZr, CuDy, CuEr, CuGd, CuSc, CuSm, CuTb, CuTm, CuY, DyIn, DyMg, DyTl, DyZn, ErMg, ErZn, FeRh, FeTi, FeV, GaIr, GaNi, GaRu, GdHg, GdIn, GdMg, GdRh, GdTl, GdZn, HfRu, HfTc, HgLa, HgLi, HgMg, HgMn, HgPr, HgSc, HgSr, HgY, HoIr, HoMg, HoRh, HoZn, InNi, InPd, IrMn, IrSc, IrTm, LuMg, LuPd, LuRh, MgNd, MgPd, MgPr, MgRh, MgSm, MgTb, MgTm, MgV, NdTl, NdZn, NiSc, NiTi, NiZn (H.T.), OsTl, OsV, OsZr, PdSc, PdSm, PdZn, PtSc, PuRu, ReTi, RhSc, RhSi, RhSm, RhTb, RhTi, RhTm, RhZr, ScZn, SmZn, SrTl, TaTc, TbZn, TcTi, TcV, TeTh, TiZn, TlY, TmZn, YZn
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Cl I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (1b) | Cs I |