Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB_cI16_217_c_c-001

This structure originally had the label AB_cI16_217_c_c. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/6RJH
or https://aflow.org/p/AB_cI16_217_c_c-001
or PDF Version

Theoretical cI16 AlN Structure: AB_cI16_217_c_c-001

Picture of Structure; Click for Big Picture
Prototype AlN
AFLOW prototype label AB_cI16_217_c_c-001
ICSD none
Pearson symbol cI16
Space group number 217
Space group symbol $I\overline{4}3m$
AFLOW prototype command aflow --proto=AB_cI16_217_c_c-001
--params=$a, \allowbreak x_{1}, \allowbreak x_{2}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $2 x_{1} \, \mathbf{a}_{1}+2 x_{1} \, \mathbf{a}_{2}+2 x_{1} \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (8c) Al I
$\mathbf{B_{2}}$ = $- 2 x_{1} \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+a x_{1} \,\mathbf{\hat{z}}$ (8c) Al I
$\mathbf{B_{3}}$ = $- 2 x_{1} \, \mathbf{a}_{2}$ = $- a x_{1} \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (8c) Al I
$\mathbf{B_{4}}$ = $- 2 x_{1} \, \mathbf{a}_{1}$ = $a x_{1} \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}- a x_{1} \,\mathbf{\hat{z}}$ (8c) Al I
$\mathbf{B_{5}}$ = $2 x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}+2 x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (8c) N I
$\mathbf{B_{6}}$ = $- 2 x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (8c) N I
$\mathbf{B_{7}}$ = $- 2 x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (8c) N I
$\mathbf{B_{8}}$ = $- 2 x_{2} \, \mathbf{a}_{1}$ = $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (8c) N I

References

  • C. Liu, M. Chen, J. Li, L. Liu, P. Li, M. Ma, C. Shao, J. He, and T. Liang, A first-principles study of novel cubic AlN phases 130, 58–66 (2019), doi:10.1016/j.jpcs.2019.02.009.

Prototype Generator

aflow --proto=AB_cI16_217_c_c --params=$a,x_{1},x_{2}$

Species:

Running:

Output: