Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3C4D12_cI40_204_a_b_c_g-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/RGPS
or https://aflow.org/p/AB3C4D12_cI40_204_a_b_c_g-001
or PDF Version

CaCu$_{3}$Mn$_{4}$O$_{12}$ Structure: AB3C4D12_cI40_204_a_b_c_g-001

Picture of Structure; Click for Big Picture
Prototype CaCu$_{3}$Mn$_{4}$O$_{12}$
AFLOW prototype label AB3C4D12_cI40_204_a_b_c_g-001
ICSD 15757
Pearson symbol cI40
Space group number 204
Space group symbol $Im\overline{3}$
AFLOW prototype command aflow --proto=AB3C4D12_cI40_204_a_b_c_g-001
--params=$a, \allowbreak y_{4}, \allowbreak z_{4}$

Other compounds with this structure

CaCu$_{3}$Co$_{4}$O$_{12}$,  CaCu$_{3}$Cr$_{4}$O$_{12}$,  CaCu$_{3}$Fe$_{4}$O$_{12}$,  CaCu$_{3}$Ge$_{4}$O$_{12}$,  CaCu$_{3}$Ir$_{4}$O$_{12}$,  CaCu$_{3}$Pt$_{4}$O$_{12}$,  CaCu$_{3}$Rh$_{4}$O$_{12}$,  CaCu$_{3}$Ru$_{4}$O$_{12}$,  CaCu$_{3}$Sn$_{4}$O$_{12}$,  CaCu$_{3}$Ti$_{4}$O$_{12}$,  CaCu$_{3}$V$_{4}$O$_{12}$,  CaCu$_{3}$Zn$_{4}$O$_{12}$,  LaCu$_{3}$Ir$_{4}$O$_{12}$,  LaCu$_{3}$Mn$_{4}$O$_{12}$,  LaCu$_{3}$Ru$_{4}$O$_{12}$,  NaCu$_{3}$Ir$_{4}$O$_{12}$,  NaCu$_{3}$Ru$_{4}$O$_{12}$,  SrCu$_{3}$Fe$_{4}$O$_{12}$



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Ca I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (6b) Cu I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (6b) Cu I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{z}}$ (6b) Cu I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Mn I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Mn I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Mn I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Mn I
$\mathbf{B_{9}}$ = $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{10}}$ = $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{11}}$ = $\left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{12}}$ = $- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{13}}$ = $y_{4} \, \mathbf{a}_{1}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{14}}$ = $- y_{4} \, \mathbf{a}_{1}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a z_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{15}}$ = $y_{4} \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{16}}$ = $- y_{4} \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a z_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ (24g) O I
$\mathbf{B_{17}}$ = $z_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}$ (24g) O I
$\mathbf{B_{18}}$ = $z_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}$ (24g) O I
$\mathbf{B_{19}}$ = $- z_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}$ (24g) O I
$\mathbf{B_{20}}$ = $- z_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}$ (24g) O I

References

  • J. Chenavas, J. C. Joubert, and M. M. B. Bochu, The synthesis and crystal structure of CaCu$_{3}$Mn$_{4}$O$_{12}$: A new ferromagnetic-perovskite-like compound, J. Solid State Chem. 14, 25–32 (1975), doi:10.1016/0022-4596(75)90358-8.

Prototype Generator

aflow --proto=AB3C4D12_cI40_204_a_b_c_g --params=$a,y_{4},z_{4}$

Species:

Running:

Output: