AFLOW Prototype: AB3C4D12_cI40_204_a_b_c_g-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/RGPS
or
https://aflow.org/p/AB3C4D12_cI40_204_a_b_c_g-001
or
PDF Version
Prototype | CaCu$_{3}$Mn$_{4}$O$_{12}$ |
AFLOW prototype label | AB3C4D12_cI40_204_a_b_c_g-001 |
ICSD | 15757 |
Pearson symbol | cI40 |
Space group number | 204 |
Space group symbol | $Im\overline{3}$ |
AFLOW prototype command |
aflow --proto=AB3C4D12_cI40_204_a_b_c_g-001
--params=$a, \allowbreak y_{4}, \allowbreak z_{4}$ |
CaCu$_{3}$Co$_{4}$O$_{12}$, CaCu$_{3}$Cr$_{4}$O$_{12}$, CaCu$_{3}$Fe$_{4}$O$_{12}$, CaCu$_{3}$Ge$_{4}$O$_{12}$, CaCu$_{3}$Ir$_{4}$O$_{12}$, CaCu$_{3}$Pt$_{4}$O$_{12}$, CaCu$_{3}$Rh$_{4}$O$_{12}$, CaCu$_{3}$Ru$_{4}$O$_{12}$, CaCu$_{3}$Sn$_{4}$O$_{12}$, CaCu$_{3}$Ti$_{4}$O$_{12}$, CaCu$_{3}$V$_{4}$O$_{12}$, CaCu$_{3}$Zn$_{4}$O$_{12}$, LaCu$_{3}$Ir$_{4}$O$_{12}$, LaCu$_{3}$Mn$_{4}$O$_{12}$, LaCu$_{3}$Ru$_{4}$O$_{12}$, NaCu$_{3}$Ir$_{4}$O$_{12}$, NaCu$_{3}$Ru$_{4}$O$_{12}$, SrCu$_{3}$Fe$_{4}$O$_{12}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Ca I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (6b) | Cu I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}$ | (6b) | Cu I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{z}}$ | (6b) | Cu I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | Mn I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | Mn I |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | Mn I |
$\mathbf{B_{8}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | Mn I |
$\mathbf{B_{9}}$ | = | $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{10}}$ | = | $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{y}}+a z_{4} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{11}}$ | = | $\left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{12}}$ | = | $- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{y}}- a z_{4} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{13}}$ | = | $y_{4} \, \mathbf{a}_{1}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $a z_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{14}}$ | = | $- y_{4} \, \mathbf{a}_{1}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $a z_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{15}}$ | = | $y_{4} \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- a z_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{16}}$ | = | $- y_{4} \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- a z_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{z}}$ | (24g) | O I |
$\mathbf{B_{17}}$ | = | $z_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}$ | (24g) | O I |
$\mathbf{B_{18}}$ | = | $z_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}+a z_{4} \,\mathbf{\hat{y}}$ | (24g) | O I |
$\mathbf{B_{19}}$ | = | $- z_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ | = | $a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}$ | (24g) | O I |
$\mathbf{B_{20}}$ | = | $- z_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ | = | $- a y_{4} \,\mathbf{\hat{x}}- a z_{4} \,\mathbf{\hat{y}}$ | (24g) | O I |