Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB32C48_cI162_204_a_2efg_2gh-001

This structure originally had the label AB32C48_cI162_204_a_2efg_2gh. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/9AQF
or https://aflow.org/p/AB32C48_cI162_204_a_2efg_2gh-001
or PDF Version

Bergman [Mg$_{32}$(Al,Zn)$_{49}$] Structure: AB32C48_cI162_204_a_2efg_2gh-001

Picture of Structure; Click for Big Picture
Prototype AlMg$_{32}$Zn$_{48}$
AFLOW prototype label AB32C48_cI162_204_a_2efg_2gh-001
Strukturbericht designation $D8_{e}$
Mineral name bergman structure
ICSD 57968
Pearson symbol cI162
Space group number 204
Space group symbol $Im\overline{3}$
AFLOW prototype command aflow --proto=AB32C48_cI162_204_a_2efg_2gh-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}$

Other compounds with this structure

Li$_{20}$Mg$_{6}$Cu$_{13}$Al$_{42}$,  Al$_{5}$CuLi$_{3}$


  • Most of the sites in this lattice have random occupancy. In particular, according to (Bergman, 1957): The Al-I (2a) site is only occupied 80% of the time, the Zn-I (24g) site is occupied by Al 19% of the time, the Zn-II (24g) site is occupied by Al 43% of the time, and the Zn-III (48h) site is occupied by Al 36% of the time.
  • The Li$_{20}$Mg$_{6}$Cu$_{13}$Al$_{42}$ structure found by (Pavlyuk, 2019) has all sites fully occupied.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Al I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12e) Mg I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12e) Mg I
$\mathbf{B_{4}}$ = $x_{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ (12e) Mg I
$\mathbf{B_{5}}$ = $- x_{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ (12e) Mg I
$\mathbf{B_{6}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ (12e) Mg I
$\mathbf{B_{7}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ (12e) Mg I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12e) Mg II
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (12e) Mg II
$\mathbf{B_{10}}$ = $x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ (12e) Mg II
$\mathbf{B_{11}}$ = $- x_{3} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ (12e) Mg II
$\mathbf{B_{12}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (12e) Mg II
$\mathbf{B_{13}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (12e) Mg II
$\mathbf{B_{14}}$ = $2 x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}+2 x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16f) Mg III
$\mathbf{B_{15}}$ = $- 2 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16f) Mg III
$\mathbf{B_{16}}$ = $- 2 x_{4} \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16f) Mg III
$\mathbf{B_{17}}$ = $- 2 x_{4} \, \mathbf{a}_{1}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16f) Mg III
$\mathbf{B_{18}}$ = $- 2 x_{4} \, \mathbf{a}_{1}- 2 x_{4} \, \mathbf{a}_{2}- 2 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16f) Mg III
$\mathbf{B_{19}}$ = $2 x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16f) Mg III
$\mathbf{B_{20}}$ = $2 x_{4} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16f) Mg III
$\mathbf{B_{21}}$ = $2 x_{4} \, \mathbf{a}_{1}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16f) Mg III
$\mathbf{B_{22}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (24g) Mg IV
$\mathbf{B_{23}}$ = $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ (24g) Mg IV
$\mathbf{B_{24}}$ = $\left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (24g) Mg IV
$\mathbf{B_{25}}$ = $- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ (24g) Mg IV
$\mathbf{B_{26}}$ = $y_{5} \, \mathbf{a}_{1}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ (24g) Mg IV
$\mathbf{B_{27}}$ = $- y_{5} \, \mathbf{a}_{1}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $a z_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ (24g) Mg IV
$\mathbf{B_{28}}$ = $y_{5} \, \mathbf{a}_{1}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{z}}$ (24g) Mg IV
$\mathbf{B_{29}}$ = $- y_{5} \, \mathbf{a}_{1}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- a z_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{z}}$ (24g) Mg IV
$\mathbf{B_{30}}$ = $z_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+\left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}$ (24g) Mg IV
$\mathbf{B_{31}}$ = $z_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}$ (24g) Mg IV
$\mathbf{B_{32}}$ = $- z_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+\left(y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}$ (24g) Mg IV
$\mathbf{B_{33}}$ = $- z_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- \left(y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}$ (24g) Mg IV
$\mathbf{B_{34}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (24g) Zn I
$\mathbf{B_{35}}$ = $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (24g) Zn I
$\mathbf{B_{36}}$ = $\left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (24g) Zn I
$\mathbf{B_{37}}$ = $- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (24g) Zn I
$\mathbf{B_{38}}$ = $y_{6} \, \mathbf{a}_{1}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{z}}$ (24g) Zn I
$\mathbf{B_{39}}$ = $- y_{6} \, \mathbf{a}_{1}- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{z}}$ (24g) Zn I
$\mathbf{B_{40}}$ = $y_{6} \, \mathbf{a}_{1}+\left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{z}}$ (24g) Zn I
$\mathbf{B_{41}}$ = $- y_{6} \, \mathbf{a}_{1}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{z}}$ (24g) Zn I
$\mathbf{B_{42}}$ = $z_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}$ (24g) Zn I
$\mathbf{B_{43}}$ = $z_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}$ (24g) Zn I
$\mathbf{B_{44}}$ = $- z_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+\left(y_{6} - z_{6}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}$ (24g) Zn I
$\mathbf{B_{45}}$ = $- z_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}$ (24g) Zn I
$\mathbf{B_{46}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (24g) Zn II
$\mathbf{B_{47}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (24g) Zn II
$\mathbf{B_{48}}$ = $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (24g) Zn II
$\mathbf{B_{49}}$ = $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (24g) Zn II
$\mathbf{B_{50}}$ = $y_{7} \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{z}}$ (24g) Zn II
$\mathbf{B_{51}}$ = $- y_{7} \, \mathbf{a}_{1}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{z}}$ (24g) Zn II
$\mathbf{B_{52}}$ = $y_{7} \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{z}}$ (24g) Zn II
$\mathbf{B_{53}}$ = $- y_{7} \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{z}}$ (24g) Zn II
$\mathbf{B_{54}}$ = $z_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}$ (24g) Zn II
$\mathbf{B_{55}}$ = $z_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}$ (24g) Zn II
$\mathbf{B_{56}}$ = $- z_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}$ (24g) Zn II
$\mathbf{B_{57}}$ = $- z_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}$ (24g) Zn II
$\mathbf{B_{58}}$ = $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{59}}$ = $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{60}}$ = $\left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{61}}$ = $- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{62}}$ = $\left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{63}}$ = $- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{64}}$ = $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{65}}$ = $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{66}}$ = $\left(x_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{67}}$ = $- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{68}}$ = $- \left(x_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{69}}$ = $\left(x_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{70}}$ = $- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{71}}$ = $\left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{72}}$ = $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{73}}$ = $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{74}}$ = $- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{75}}$ = $\left(x_{8} + y_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{76}}$ = $\left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{77}}$ = $- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{78}}$ = $- \left(x_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{79}}$ = $\left(x_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{2}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{80}}$ = $\left(x_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48h) Zn III
$\mathbf{B_{81}}$ = $- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{2}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48h) Zn III

References

  • G. Bergman, J. L. T. Waugh, and L. Pauling, The crystal structure of the metallic phase Mg$_{32}$(Al,Zn)$_{49}$ 10, 254–9 (1957), doi:10.1107/S0365110X57000808.
  • N. Pavlyuk, G. Dmytriv, V. Pavlyuk, and H. Ehrenberg, Li$_{20}$Mg$_{6}$Cu$_{13}$Al$_{42}$: a new ordered quaternary superstructure to the icosahedral T-Mg$_{32}$(Zn,Al)$_{49}$ phase with fullereneā€like Al$_{60}$ cluster, Acta Crystallogr. Sect. B 75, 168–174 (2019), doi:10.1107/S2052520619000349.

Prototype Generator

aflow --proto=AB32C48_cI162_204_a_2efg_2gh --params=$a,x_{2},x_{3},x_{4},y_{5},z_{5},y_{6},z_{6},y_{7},z_{7},x_{8},y_{8},z_{8}$

Species:

Running:

Output: